[1. Apostolou, E., Pelto, L., Kirjavainen, P. V., Isolauri, E., Salminen, S. J., Gibson, G. R., 2001: Differences in the gut bacterial flora of healthy and milk-hypersensitive adults, as measured by fluorescence in situ hybridization. FEMS Immunol. Med. Microbiol., 30, 217—221.10.1111/j.1574-695X.2001.tb01573.x11335141]Search in Google Scholar
[2. Bermudez-Brito, M., Plaza-Díaz J., Muńoz-Quezada, S., Gómez-Llorente, C., Gil, A., 2012: Probiotic mechanisms of action. Ann. Nutr. Metab., 61, 160—174.10.1159/00034207923037511]DOI öffnenSearch in Google Scholar
[3. Bomba, A., Nemcová, R., Gancarčíková, S., Herich, R., Guba, P., Mudroňová, D., 2002: Improvement of the probiotic effect of microorganisms by their combination with maltodextrins, fructo-oligosacharides and polyunsatured fatty acids. Br. J. Nutr., 88, 95—99.10.1079/BJN200263412215187]Search in Google Scholar
[4. Chang, Y. H., Kim, J. K., Kim, H. J., Kim, W. Y., Kim, Y. B., Park, Y. H., 2001: Selection of a potential probiotic Lactobacillus strain and subsequent in vivo studies. Antonie Van Leeuwenhoek, 80, 193—199.10.1023/A:1012213728917]Search in Google Scholar
[5. Chiang, M. L., Chen, H. C., Chen, K. N., Lin, Y. C., Lin, Y. T., Chen, M. J., 2015: Optimizing production of two potential probiotic lactobacilli strains isolated from piglet faeces as feed additives for weaned piglets. Asian Australas. J. Anim. Sci., 28, 1163—1170.10.5713/ajas.14.0780447848526104525]Search in Google Scholar
[6. Corcionivoschi, N., Drinceanu, D., Pop, I. M., Stack, D., Stef, L., Julean, C., Bourke, B., 2010: The effect of probiotics on animal health. Anim. Sci. Biotechnol., 43, 35—41.]Search in Google Scholar
[7. Czerwiński, J., Højberg, O., Smulikowska, S., Engberg, R. M., Mieczkowska, A., 2012: Effects of sodium butyrate and salinomycin upon intestinal microbiota, mucosal morphology and performance of broiler chickens. Arch. Anim. Nutr., 66, 102—116.10.1080/1745039X.2012.66366822641923]Search in Google Scholar
[8. De Vuyst, L., Vrancken, G., Ravyts, F., Rimaux, F., Weckx, S., 2009: Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol., 26, 666—675.10.1016/j.fm.2009.07.01219747599]Search in Google Scholar
[9. Eisenhauer, N., Scheu, S., Jousset, A., 2012: Bacterial diversity stabilizes community productivity. PLoS One. 7, e34517. doi: 10.1371/journal.pone.0034517.10.1371/journal.pone.0034517331463222470577]Search in Google Scholar
[10. Franks, A. H., Harmsen, H. J., Raangs, G. C., Jansen, G. J., Schut, F., Welling, G. W., 1998: Variations of bacterial populations in human faeces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microb., 64, 3336—3345.10.1128/AEM.64.9.3336-3345.19981067309726880]Search in Google Scholar
[11. Frese, S. A., Benson, A. K., Tannock, G. W., Loach, D. M., Kim, J., Zhang, M., et al., 2011: The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet., 7 (2. e1001314. doi: 10.1371/journal.pgen.1001314.10.1371/journal.pgen.1001314304067121379339]Search in Google Scholar
[12. Frese, S. A., MacKenzie, D. A., Peterson, D. A., Schmaltz, R., Fangman, T., Zhou, Y., et al., 2013: Molecular characterization of host-specific biofilm formation in a vertebrate gut symbiont. PLoS Genet., 9, 1—13.10.1371/journal.pgen.1004057387325424385934]Search in Google Scholar
[13. Fuentes, S., Egert, M., Jiménez-Valera, M., Ramos-Cormenzana, A., Ruiz-Bravo, A., Smidt, H., Monteoliva-Sanchez, M., 2008: Administration of Lactobacillus casei and Lactobacillus plantarum affects the diversity of murine intestinal lactobacilli, but not the overall bacterial community structure. Res. Microbiol., 159, 237—243.10.1016/j.resmic.2008.02.00518439805]Search in Google Scholar
[14. Giang, H. H., Viet, T. Q., Ogle, B., Lindberg, J. E., 2010: Growth performance digestibility gut environment and health status in weaned piglets fed a diet supplemented with potentially probiotic complexes of lactic acid bacteria. Livest. Sci., 129, 95—103.10.1016/j.livsci.2010.01.010]Search in Google Scholar
[15. Harmsen, H. J. M., Elfferich, P., Schut, F., Welling, G. W., 1999: A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization. Microbiol. Ecol. Health Dis., 11, 3—12.10.3402/mehd.v11i1.7876]Search in Google Scholar
[16. Hou, Ch., Zeng, X., Yang, F., Liu, H., Qiao, S., 2015: Study and use of the probiotic Lactobacillus reuteri in pigs: a review. Journal of Animal Science and Biotechnology, 6:14 doi 10.1186/s40104-015-0014-3.10.1186/s40104-015-0014-3442358625954504]DOI öffnenSearch in Google Scholar
[17. Huang, C. H., Qiao, S. Y., Li, D. F., Piao, X. S., Ren, J. P., 2004: Effects of Lactobacilli on the performance diarrhoea incidence VFA concentration and gastrointestinal microbial flora of weaning pigs. Asian Aust. J. Anim. Sci., 17, 401—409.10.5713/ajas.2004.401]Search in Google Scholar
[18. Jansen, G. J., Mooibroek, M., Idema, J., Harmsen, H. J., Welling, G. W., Degener, J. E., 2000: Rapid identification of bacteria in blood cultures by using fluorescently labelled oligonucleotide probes. J. Clin. Microbiol., 38, 814—817.10.1128/JCM.38.2.814-817.20008621110655390]Search in Google Scholar
[19. Langendijk, P. S., Schut, F., Jansen, G. J., Raangs, G. C., Kamphuis, G. R., Wilkinson, M. H. F., Welling, G. W., 1995: Quantitative in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA targeted probes and its application in faecal samples. Appl. Environ. Microbiol., 61, 3069—3075.10.1128/aem.61.8.3069-3075.19951675847487040]Search in Google Scholar
[20. Li, D., Ni, K., Pang, H., Wang, Y., Cai, Y., Jin, Q., 2015: Identification and antimicrobial activity detection of lactic acid bacteria isolated from corn stover silage. Asian Australas. J. Anim. Sci., 28, 620—631.10.5713/ajas.14.0439441299125924957]Search in Google Scholar
[21. Liu, H., Zhang, J., Zhang, S. H., Yang, F. J., Thacker, P. A., Zhang, G. L., et al., 2014: Oral administration of Lactobacillus fermentum I5007 favours intestinal development and alters the intestinal microbiota in formula-fed piglets. J. Agric. Food. Chem., 62, 860—866.10.1021/jf403288r24404892]Search in Google Scholar
[22. Oh, P. L., Benson, A. K., Peterson, D. A., Patil, P. B., Moriyama, E. N., Roos, S., Walter, J., 2010: Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. ISME J., 4, 377—387.10.1038/ismej.2009.12319924154]DOI öffnenSearch in Google Scholar
[23. Preidis, G., Saulnier, D., Blutt, S., Mistretta, T., Riehle, K., Major, A., et al., 2012: Probiotics stimulate enterocyte migration and microbial diversity in the neonatal mouse intestine. FASEB J., 26, 1960—1969.10.1096/fj.10-177980333678522267340]DOI öffnenSearch in Google Scholar
[24. Preidis, G., Versalovic, J., 2009: Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterol., 136, 2015—2031.10.1053/j.gastro.2009.01.072410828919462507]Search in Google Scholar
[25. Quevedo, B., Giertsen, E., Zijnge, V., Lüthi-Schaller, H., Guggenheim, B., Thurnheer, T., Gmür, R., 2011: Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms. BMC Microbiol., 11:14. doi: 10.1186/1471-2180-11-4.10.1186/1471-2180-11-4302264421208463]DOI öffnenSearch in Google Scholar
[26. Ryznerová, D., 2013:The Study of Properties of Probiotic Bacteria from the Point of View of their Biological Effects and Application (In Slovak). Dissertation thesis, University of Veterinary Medicine and Pharmacy, Košice, Slovakia, 146 pp.]Search in Google Scholar
[27. Slížová, M., Nemcová, R., Maďar, M., Hádryová, J., Gancarčíková, S., Popper, M., Pistl, J., 2015: Analysis of biofilm formation by intestinal lactobacilli. Can. J. Microbiol., 61, 437—446.10.1139/cjm-2015-000725961850]Search in Google Scholar
[28. Su, M. S., Phaik, L. O., Walter, J., Gänzle, M. G., 2012: Phylogenetic, genetic, and physiological analysis of sourdough isolates of Lactobacillus reuteri: food fermenting strains of intestinal origin. Appl. Environ. Microbiol., 78, 6777—6780.10.1128/AEM.01678-12342670122798372]DOI öffnenSearch in Google Scholar
[29. Thomas, C., Versalovic, J., 2010: Probiotics-host communication: modulation of signalling pathways in the intestine. Gut Microbes, 1, 148—163.10.4161/gmic.1.3.11712290949220672012]Search in Google Scholar
[30. Thu, T. V., Loh, T. C., Foo, H. L., Yaakub, H., Bejo, M. H., 2011: Effects of liquid metabolite combinations produced by Lactobacillus plantarum on growth performance, faeces characteristics, intestinal morphology and diarrhoea incidence in post weaning piglets. Trop. Anim. Health. Prod., 43, 69—75.10.1007/s11250-010-9655-6299585920632092]Search in Google Scholar
[31. Walter, J., 2008a: Ecological role of lactobacilli in the gastrointestinal tract: Implications for fundamental and biomedical research. Appl. Environ. Microbiol., 74, 4985—4996.10.1128/AEM.00753-08251928618539818]DOI öffnenSearch in Google Scholar
[32. Walter, J., Schwab, C., Loach, D. M., Gänzle, M. G., Tannock, G. W., 2008b: Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract. Microbiol., 154, 72—80.10.1099/mic.0.2007/010637-018174127]Search in Google Scholar