1. bookVolume 61 (2017): Issue 3 (September 2017)
Journal Details
License
Format
Journal
eISSN
2453-7837
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Open Access

The Influence of Supplementation of Feed with Lactobacillus reuteri L2/6 Biocenol on Intestinal Microbiota of Conventional Mice

Published Online: 11 Oct 2017
Volume & Issue: Volume 61 (2017) - Issue 3 (September 2017)
Page range: 23 - 31
Received: 05 Jun 2017
Accepted: 11 Jul 2017
Journal Details
License
Format
Journal
eISSN
2453-7837
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Abstract

FISH (fluorescence in situ hybridization) analysis of the intestinal tract of conventional mice, following 14-day supplementation of feed with host non-specific (porcine) strain L. reuteri L2/6, showed in the presence of complex microbiota, a significant increase in the counts of representatives of the genera Lactobacillus and Bifidobacterium, and a significant decrease in the representatives of the genera Clostridium, Bacteroides and Enterobacteriaceae. At the same time, the supplemented strain stimulated the population of caecal lactobacilli of the species L. reuteri. These results demonstrated that the L. reuteri L2/6 colonised the jejunum, ileum and caecum and modulated the investigated intestinal microbiota.

Keywords

1. Apostolou, E., Pelto, L., Kirjavainen, P. V., Isolauri, E., Salminen, S. J., Gibson, G. R., 2001: Differences in the gut bacterial flora of healthy and milk-hypersensitive adults, as measured by fluorescence in situ hybridization. FEMS Immunol. Med. Microbiol., 30, 217—221.10.1111/j.1574-695X.2001.tb01573.x11335141Search in Google Scholar

2. Bermudez-Brito, M., Plaza-Díaz J., Muńoz-Quezada, S., Gómez-Llorente, C., Gil, A., 2012: Probiotic mechanisms of action. Ann. Nutr. Metab., 61, 160—174.10.1159/00034207923037511Open DOISearch in Google Scholar

3. Bomba, A., Nemcová, R., Gancarčíková, S., Herich, R., Guba, P., Mudroňová, D., 2002: Improvement of the probiotic effect of microorganisms by their combination with maltodextrins, fructo-oligosacharides and polyunsatured fatty acids. Br. J. Nutr., 88, 95—99.10.1079/BJN200263412215187Search in Google Scholar

4. Chang, Y. H., Kim, J. K., Kim, H. J., Kim, W. Y., Kim, Y. B., Park, Y. H., 2001: Selection of a potential probiotic Lactobacillus strain and subsequent in vivo studies. Antonie Van Leeuwenhoek, 80, 193—199.10.1023/A:1012213728917Search in Google Scholar

5. Chiang, M. L., Chen, H. C., Chen, K. N., Lin, Y. C., Lin, Y. T., Chen, M. J., 2015: Optimizing production of two potential probiotic lactobacilli strains isolated from piglet faeces as feed additives for weaned piglets. Asian Australas. J. Anim. Sci., 28, 1163—1170.10.5713/ajas.14.0780447848526104525Search in Google Scholar

6. Corcionivoschi, N., Drinceanu, D., Pop, I. M., Stack, D., Stef, L., Julean, C., Bourke, B., 2010: The effect of probiotics on animal health. Anim. Sci. Biotechnol., 43, 35—41.Search in Google Scholar

7. Czerwiński, J., Højberg, O., Smulikowska, S., Engberg, R. M., Mieczkowska, A., 2012: Effects of sodium butyrate and salinomycin upon intestinal microbiota, mucosal morphology and performance of broiler chickens. Arch. Anim. Nutr., 66, 102—116.10.1080/1745039X.2012.66366822641923Search in Google Scholar

8. De Vuyst, L., Vrancken, G., Ravyts, F., Rimaux, F., Weckx, S., 2009: Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol., 26, 666—675.10.1016/j.fm.2009.07.01219747599Search in Google Scholar

9. Eisenhauer, N., Scheu, S., Jousset, A., 2012: Bacterial diversity stabilizes community productivity. PLoS One. 7, e34517. doi: 10.1371/journal.pone.0034517.10.1371/journal.pone.0034517331463222470577Search in Google Scholar

10. Franks, A. H., Harmsen, H. J., Raangs, G. C., Jansen, G. J., Schut, F., Welling, G. W., 1998: Variations of bacterial populations in human faeces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microb., 64, 3336—3345.10.1128/AEM.64.9.3336-3345.19981067309726880Search in Google Scholar

11. Frese, S. A., Benson, A. K., Tannock, G. W., Loach, D. M., Kim, J., Zhang, M., et al., 2011: The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet., 7 (2. e1001314. doi: 10.1371/journal.pgen.1001314.10.1371/journal.pgen.1001314304067121379339Search in Google Scholar

12. Frese, S. A., MacKenzie, D. A., Peterson, D. A., Schmaltz, R., Fangman, T., Zhou, Y., et al., 2013: Molecular characterization of host-specific biofilm formation in a vertebrate gut symbiont. PLoS Genet., 9, 1—13.10.1371/journal.pgen.1004057387325424385934Search in Google Scholar

13. Fuentes, S., Egert, M., Jiménez-Valera, M., Ramos-Cormenzana, A., Ruiz-Bravo, A., Smidt, H., Monteoliva-Sanchez, M., 2008: Administration of Lactobacillus casei and Lactobacillus plantarum affects the diversity of murine intestinal lactobacilli, but not the overall bacterial community structure. Res. Microbiol., 159, 237—243.10.1016/j.resmic.2008.02.00518439805Search in Google Scholar

14. Giang, H. H., Viet, T. Q., Ogle, B., Lindberg, J. E., 2010: Growth performance digestibility gut environment and health status in weaned piglets fed a diet supplemented with potentially probiotic complexes of lactic acid bacteria. Livest. Sci., 129, 95—103.10.1016/j.livsci.2010.01.010Search in Google Scholar

15. Harmsen, H. J. M., Elfferich, P., Schut, F., Welling, G. W., 1999: A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization. Microbiol. Ecol. Health Dis., 11, 3—12.10.3402/mehd.v11i1.7876Search in Google Scholar

16. Hou, Ch., Zeng, X., Yang, F., Liu, H., Qiao, S., 2015: Study and use of the probiotic Lactobacillus reuteri in pigs: a review. Journal of Animal Science and Biotechnology, 6:14 doi 10.1186/s40104-015-0014-3.10.1186/s40104-015-0014-3442358625954504Open DOISearch in Google Scholar

17. Huang, C. H., Qiao, S. Y., Li, D. F., Piao, X. S., Ren, J. P., 2004: Effects of Lactobacilli on the performance diarrhoea incidence VFA concentration and gastrointestinal microbial flora of weaning pigs. Asian Aust. J. Anim. Sci., 17, 401—409.10.5713/ajas.2004.401Search in Google Scholar

18. Jansen, G. J., Mooibroek, M., Idema, J., Harmsen, H. J., Welling, G. W., Degener, J. E., 2000: Rapid identification of bacteria in blood cultures by using fluorescently labelled oligonucleotide probes. J. Clin. Microbiol., 38, 814—817.10.1128/JCM.38.2.814-817.20008621110655390Search in Google Scholar

19. Langendijk, P. S., Schut, F., Jansen, G. J., Raangs, G. C., Kamphuis, G. R., Wilkinson, M. H. F., Welling, G. W., 1995: Quantitative in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA targeted probes and its application in faecal samples. Appl. Environ. Microbiol., 61, 3069—3075.10.1128/aem.61.8.3069-3075.19951675847487040Search in Google Scholar

20. Li, D., Ni, K., Pang, H., Wang, Y., Cai, Y., Jin, Q., 2015: Identification and antimicrobial activity detection of lactic acid bacteria isolated from corn stover silage. Asian Australas. J. Anim. Sci., 28, 620—631.10.5713/ajas.14.0439441299125924957Search in Google Scholar

21. Liu, H., Zhang, J., Zhang, S. H., Yang, F. J., Thacker, P. A., Zhang, G. L., et al., 2014: Oral administration of Lactobacillus fermentum I5007 favours intestinal development and alters the intestinal microbiota in formula-fed piglets. J. Agric. Food. Chem., 62, 860—866.10.1021/jf403288r24404892Search in Google Scholar

22. Oh, P. L., Benson, A. K., Peterson, D. A., Patil, P. B., Moriyama, E. N., Roos, S., Walter, J., 2010: Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. ISME J., 4, 377—387.10.1038/ismej.2009.12319924154Open DOISearch in Google Scholar

23. Preidis, G., Saulnier, D., Blutt, S., Mistretta, T., Riehle, K., Major, A., et al., 2012: Probiotics stimulate enterocyte migration and microbial diversity in the neonatal mouse intestine. FASEB J., 26, 1960—1969.10.1096/fj.10-177980333678522267340Open DOISearch in Google Scholar

24. Preidis, G., Versalovic, J., 2009: Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterol., 136, 2015—2031.10.1053/j.gastro.2009.01.072410828919462507Search in Google Scholar

25. Quevedo, B., Giertsen, E., Zijnge, V., Lüthi-Schaller, H., Guggenheim, B., Thurnheer, T., Gmür, R., 2011: Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms. BMC Microbiol., 11:14. doi: 10.1186/1471-2180-11-4.10.1186/1471-2180-11-4302264421208463Open DOISearch in Google Scholar

26. Ryznerová, D., 2013:The Study of Properties of Probiotic Bacteria from the Point of View of their Biological Effects and Application (In Slovak). Dissertation thesis, University of Veterinary Medicine and Pharmacy, Košice, Slovakia, 146 pp.Search in Google Scholar

27. Slížová, M., Nemcová, R., Maďar, M., Hádryová, J., Gancarčíková, S., Popper, M., Pistl, J., 2015: Analysis of biofilm formation by intestinal lactobacilli. Can. J. Microbiol., 61, 437—446.10.1139/cjm-2015-000725961850Search in Google Scholar

28. Su, M. S., Phaik, L. O., Walter, J., Gänzle, M. G., 2012: Phylogenetic, genetic, and physiological analysis of sourdough isolates of Lactobacillus reuteri: food fermenting strains of intestinal origin. Appl. Environ. Microbiol., 78, 6777—6780.10.1128/AEM.01678-12342670122798372Open DOISearch in Google Scholar

29. Thomas, C., Versalovic, J., 2010: Probiotics-host communication: modulation of signalling pathways in the intestine. Gut Microbes, 1, 148—163.10.4161/gmic.1.3.11712290949220672012Search in Google Scholar

30. Thu, T. V., Loh, T. C., Foo, H. L., Yaakub, H., Bejo, M. H., 2011: Effects of liquid metabolite combinations produced by Lactobacillus plantarum on growth performance, faeces characteristics, intestinal morphology and diarrhoea incidence in post weaning piglets. Trop. Anim. Health. Prod., 43, 69—75.10.1007/s11250-010-9655-6299585920632092Search in Google Scholar

31. Walter, J., 2008a: Ecological role of lactobacilli in the gastrointestinal tract: Implications for fundamental and biomedical research. Appl. Environ. Microbiol., 74, 4985—4996.10.1128/AEM.00753-08251928618539818Open DOISearch in Google Scholar

32. Walter, J., Schwab, C., Loach, D. M., Gänzle, M. G., Tannock, G. W., 2008b: Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract. Microbiol., 154, 72—80.10.1099/mic.0.2007/010637-018174127Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo