1. bookVolume 66 (2017): Issue 1 (March 2017)
Journal Details
License
Format
Journal
eISSN
2544-4646
First Published
04 Mar 1952
Publication timeframe
4 times per year
Languages
English
access type Open Access

Isolation and Characterization of Phosphate-Solubilizing Bacteria from Mushroom Residues and their Effect on Tomato Plant Growth Promotion

Published Online: 30 Mar 2017
Volume & Issue: Volume 66 (2017) - Issue 1 (March 2017)
Page range: 57 - 65
Received: 24 Dec 2015
Accepted: 12 Apr 2016
Journal Details
License
Format
Journal
eISSN
2544-4646
First Published
04 Mar 1952
Publication timeframe
4 times per year
Languages
English
Abstract

Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.

Key words

Adesemoye A.O., H.A. Torbert and J.W. Kloepper. 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecol. 58: 921–929.10.1007/s00248-009-9531-y19466478 Search in Google Scholar

Afshan M., M. Kaleem, A. Sohail, H. Asma and I. Nasir. 2015. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front. Microbiol. 1: 6.10.3389/fmicb.2015.00198436234125852661 Search in Google Scholar

Alam M.M. and J.K. Ladha. 2004. Optimizing phosphorus fertilization in an intensive vegetable-rice cropping system. Biol. Fert. Soils. 40: 277–283.10.1007/s00374-004-0778-7 Search in Google Scholar

Chopade B.A., D.P. Sachdev, H.G. Chaudhari, V.M. Kasture and D.D. Dhavale. 2009. Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. In. J. Exp. Biol. 47: 993–1000. Search in Google Scholar

Chung H., M. Park, M. Madhaiyan, S. Seshadri, J. Song, H. Cho and T. Sa. 2005. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol. Biochem. 37: 1970–1974.10.1016/j.soilbio.2005.02.025 Search in Google Scholar

Ding Y., J. Wang, Y. Liu and S. Chen. 2005. Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. J. Appl. Microbiol. 99: 1271–1281.10.1111/j.1365-2672.2005.02738.x16238759 Search in Google Scholar

Fernández L., P. Zalba, M. Gómez and M. Sagardoy. 2007. Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol. Fert. Soils. 43: 805–809.10.1007/s00374-007-0172-3 Search in Google Scholar

Gordon S.A. and R.P. Weber. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26: 192.10.1104/pp.26.1.19243763316654351 Search in Google Scholar

Grönemeyer J., C. Burbano, T. Hurek and B. Reinhold-Hurek. 2011. Isolation and characterization of root-associated bacteria from agricultural crops in the Kavango region of Namibia. Plant and Soil. 356: 67–82.10.1007/s11104-011-0798-7 Search in Google Scholar

Guiñazú L.B., J.A. Andrés, M.F. Del Papa, M. Pistorio and S.B. Rosas. 2010. Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol. Fert. Soils. 46:185–190. Search in Google Scholar

Gulati A., N. Sharma, P. Vyas, S. Sood, P. Rahi, V. Pathania and R. Prasad. 2010. Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Arch. Microbiol. 192: 975–983.10.1007/s00203-010-0615-320821196 Search in Google Scholar

Gyaneshwar P., G. Naresh Kumar, L.J. Parekh and P.S. Poole. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 245: 83–93.10.1023/A:1020663916259 Search in Google Scholar

Hafeez F.Y., S. Yasmin, D. Ariani, U.R. Mehboob, R.Y. Zafar and K.A. Malik. 2006. Plant growth-promoting bacteria as biofertilizer. Agron. Sust. Develop. 26: 143–150.10.1051/agro:2006007 Search in Google Scholar

Hoagland D.R. and D.I. Arnon. 1950. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 347: 4–31. Search in Google Scholar

Holt J.G., N.R. Kreig, P.H.A. Sneath, J.T. Staley and S.T. Williams. 1994. Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore, USA. Search in Google Scholar

Johri B. 2011. Bacterial diversity in a bagasse-based compost prepared for the cultivation of edible mushrooms Agaricus bisporus. J. Agr. Technol. 7: 1303–1311. Search in Google Scholar

Johri J.K., S. Surange and C.S. Nautiyal. 1999. Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Curr. Microbiol. 39: 89–93. Search in Google Scholar

Kumar R.S., N. Ayyadurai, P. Pandiaraja, A.V. Reddy, Y. Venkateswarlu, O. Prakash and N. Sakthivel. 2005. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol. 98: 145–154.10.1111/j.1365-2672.2004.02435.x Search in Google Scholar

Laguerre G., M.R. Allard, F. Revoy and N. Amarger. 1994. Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl. Environ. Microbiol. 60: 56–63.10.1128/aem.60.1.56-63.1994 Search in Google Scholar

Li H.J., H.Y. Chen, L.L. Fan, Z.H. Jiao, Q.H. Chen and Y.C. Jiao. 2015. In vitro antioxidant activities and in vivo anti-hypoxic activity of the edible mushroom Agaricus bisporus (lange) sing. chaidam. Molecules. 20: 17775.10.3390/molecules201017775 Search in Google Scholar

Liu X., L. Wang, C. Zhang, H. Wang, X. Zhang and Y. Li. 2015. Structure characterization and antitumor activity of a polysaccharide from the alkaline extract of king oyster mushroom. Carbohy. Poly. 118: 101–106.10.1016/j.carbpol.2014.10.058 Search in Google Scholar

Nautiyal C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265–270.10.1111/j.1574-6968.1999.tb13383.x Search in Google Scholar

Park J.H., N. Bolan, M. Megharaj and R. Naidu. 2011, Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J. Hazard. Mater. 185: 829–836.10.1016/j.jhazmat.2010.09.095 Search in Google Scholar

Park M., C. Kim, J. Yang, H. Lee, W. Shin, S. Kim and T. Sa. 2005. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res. 160: 127–133.10.1016/j.micres.2004.10.003 Search in Google Scholar

Poonguzhali S., M. Madhaiyan and T. Sa. 2008. Isolation and identification of phosphate solubilizing bacteria from chinese cabbage and their effect on growth and phosphorus utilization of plants. J. Microbiol. Biotechnol. 18: 773–777. Search in Google Scholar

Puente M., C. Li and Y. Bashan. 2004. Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings. Plant Biol. 6: 643–650.10.1055/s-2004-821101 Search in Google Scholar

Rodríguez H. and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319–339.10.1016/S0734-9750(99)00014-2 Search in Google Scholar

Sæbø A. and F. Ferrini. 2006. The use of compost in urban green areas-A review for practical application. Urban. Urban. Greening. 4: 159–169.10.1016/j.ufug.2006.01.003 Search in Google Scholar

Sambrook J., E.F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Press, New York. Search in Google Scholar

Schwyn B. and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Analy. Biochem. 160: 47–56.10.1016/0003-2697(87)90612-9 Search in Google Scholar

Tamura K., J. Dudley, M. Nei and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.10.1093/molbev/msm09217488738 Search in Google Scholar

Teather R.M. and P.J. Wood. 1982. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43: 777–780.10.1128/aem.43.4.777-780.19822419177081984 Search in Google Scholar

Ullah S. and A. Bano. 2015. Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Can. J. Microbiol. 61: 307–313.10.1139/cjm-2014-066825776270 Search in Google Scholar

Vassilev N. and M. Vassileva. 2003. Biotechnological solubilization of rock phosphate on media containing agroindustrial wastes. Appl. Environ. Microbiol. 61: 435–440.10.1007/s00253-003-1318-312692692 Search in Google Scholar

Vessey J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255: 571–586.10.1023/A:1026037216893 Search in Google Scholar

Watanabe F. and S. Olsen. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soci. Ame. J. 29: 677–678.10.2136/sssaj1965.03615995002900060025x Search in Google Scholar

Yegorenkova I.V., S.A. Konnova, V.N. Sachuk and V.V. Ignatov. 2001. Azospirillum brasilense colonisation of wheat roots and the role of lectin-carbohydrate interactions in bacterial adsorption and root-hair deformation. Plant and Soil 231: 275–282.10.1023/A:1010340700694 Search in Google Scholar

Yu X., X. Liu, T. Zhu, G. Liu and C. Mao. 2011. Isolation and characterization of phosphate-solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization. Biol. Fert. Soils. 47: 437–446.10.1007/s00374-011-0548-2 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo