1. bookVolume 66 (2017): Issue 1 (March 2017)
Journal Details
License
Format
Journal
eISSN
2544-4646
First Published
04 Mar 1952
Publication timeframe
4 times per year
Languages
English
access type Open Access

Dipicolinic Acid Release and the Germination of Alicyclobacillus acidoterrestris Spores under Nutrient Germinants

Published Online: 30 Mar 2017
Volume & Issue: Volume 66 (2017) - Issue 1 (March 2017)
Page range: 67 - 74
Received: 29 Apr 2016
Accepted: 30 Jul 2016
Journal Details
License
Format
Journal
eISSN
2544-4646
First Published
04 Mar 1952
Publication timeframe
4 times per year
Languages
English
Abstract

The presence of Alicyclobacillus, a thermoacidophilic and spore-forming bacterium, in acidic fruit juices poses a serious problem for the processing industry. A typical sign of spoilage in contaminated juices is a characteristic phenolic off-flavour associated with the production of guaiacol. Spores are formed in response to starvation and in a natural environment re-access the nutrients, e.g.: L-alanine and AGFK – a mixture of asparagine, glucose, fructose and potassium, triggers germination. The aim of this study was to estimate the impact of L-alanine and AGFK on the germination of the spores of two Alicyclobacillus acidoterrestris strains and to evaluate the relationship of the germination rate with dipicolinic acid (DPA) release. The spores were suspended in apple juice or in buffers at pH 4 and pH 7, followed by the addition of L-alanine and AGFK. Suspensions were or were not subjected, to a temperature of 80°C/10 min and incubated for various periods of time at 45°C. Optical density (OD660) was used to estimate the number of germinated spores. The amount of DPA released was determined using HPLC. The results indicate that the degree of germination of A. acidoterrestris spores depended on the strain and time of incubation and the nutritious compounds used. The data obtained show that the amount of DPA released correlated to the number of A. acidoterrestris spores germinated.

Key words

Abel-Santos E. and T. Dodatko. 2007. Differential nucleoside recognition during Bacillus cereus 569 (ATCC 10876) spore germination. New J. Chem. 31: 748–755.10.1039/b616695d Search in Google Scholar

Akoachere M., R.C. Squires, A.M. Nour, L. Angelov, J. Brojatsch and E.V. Abel-Santos. 2007. Identification of an in vivo inhibitor of Bacillus anthracis Sterne spore germination. J. Biol. Chem. 282: 12112–12118.10.1074/jbc.M61143220017296608 Search in Google Scholar

Bae Y.Y., H.J. Lee, S.A. Kim and M.S. Rhee. 2009. Inactivation of Alicyclobacillus acidoterrestris spores in apple juice by supercritical carbon dioxide. Int. J. Food Microbiol. 136(1): 95–100. Search in Google Scholar

Barlass P.J., C.W. Houston, M.O. Clements and A. Moir. 2002. Germination of Bacillus cereus spores in response to L-alanine and to nosine: the roles of gerL and gerQ operons. Microbiol. 148: 2089–2095.10.1099/00221287-148-7-208912101297 Search in Google Scholar

Bevilacqua A., E. Ciuffreda, M. Sinigaglia and M.R. Corbo. 2014. Effects of lysozyme on Alicyclobacillus acidoterrestris under laboratory conditions. Int. J. Food Sci. Technol. 49: 224–229.10.1111/ijfs.12302 Search in Google Scholar

Bevilacqua A., E. Ciufureda, M. Sinigaglia and M. Rosario Corbo. 2015. Spore inactivation and DPA release in Alicyclobacillus acidoterrestris under stress conditions. Food Microbiol. 46: 299–306.10.1016/j.fm.2014.08.01725475299 Search in Google Scholar

Broussolle V., F. Alberto, C.A. Shearman, D.R. Mason, L. Botella, C. Nguyen, M.W. Peck and F. Carlin. 2002. Molecular and physiological characterisation of spore germination in Clostridium botulinum and Clostridium sporogenes. Anaerobe 8:89–100.10.1006/anae.2002.0424 Search in Google Scholar

Brunt J., J. Plowman, D.K. Gaskin, M. Itchner, A.T. Carter and M.W. Peck. 2014. Functional characterisation of germinant receptors in Clostridium botulinum and Clostridium sporogenes present novel insights into spore germination system. Plos One 10(9): e1004382.10.1371/journal.ppat.1004382416148125210747 Search in Google Scholar

Byun B.Y., Y. Liu and J. Tang. 2011. Optimization and evaluation of heat-shock condition for spore enumeration being used in thermalprocess verification: differentaial responses of spores and vegetative cells of Clostridium sporogenes to heat shock. Food Sci. Biotechnol. 20: 751–757.10.1007/s10068-011-0105-7 Search in Google Scholar

Cabera-Martinez R.M., F. Tovar-Rojo, V.R. Vepachedu and P. Setlow. 2003. Effect of overexpressiom of nutrient receptors on gemination of spores of Bacilus subtilis. J. Bacteriol. 185(8): 2457–2464. Search in Google Scholar

Chen Y., W.K. Ray, R.F. Helm, S.B. Melville and D.L. Popham. 2014. Levels of germination proteins in Bacilluis subtilis dormant, superdormant, and germinating spores. Plos One 9(4): e95781. Search in Google Scholar

Christie G. and C.R. Lowel. 2008. Amino acid substitutions in transmembrane domains 9 and 10 of GerVB that affect the germination properties of Bacillus megaterium spores. J. Bacteriol. 190: 8009–8017.10.1128/JB.01073-08259322018931114 Search in Google Scholar

Cruz-Mora J., A. Pérez-Valdespino, S. Gupta, N. Withange, R. Kuwana, H. Takamatsu, G. Christie and P. Setlow. 2015. The GerW protein is not involved in the germination of spores of Bacillus species. PLoS One 10(3): e0119125.10.1371/journal.pone.0119125436623125790435 Search in Google Scholar

Dodatko T., M. Akoachere, S.M. Muehlbauer, F. Helfrich, A. Howerton, C. Ross, V. Wysocki, J. Brojatsch and E. Abel-Santos. 2009. Bacillus cereus spores release alanine that synergizes with inosine to promote germination. PloS One 4(7): e6398.10.1371/journal.pone.0006398271268419636427 Search in Google Scholar

Fisher N. and P. Hanna. 2005. Characterization of Bacillus anthracis germinant receptors in vitro. J. Bacteriol. 187: 8055–8062.10.1128/JB.187.23.8055-8062.2005129127816291679 Search in Google Scholar

Ghosh S., M. Scotland and P. Setlow. 2012. Levels of germination proteins in dormant and superdormant spores of Bacillus subtilis. J. Bacteriol. 194(9):2221–2227. Search in Google Scholar

Kato S., A. Masayama, T. Yoshimura, H. Hemmi, H. Tsunoda, T. Kihara and R. Moriyama. 2009. Physiological role of carbon dioxide in spore germination of Clostridium perfringens S40. J. Biosci. Bioeng. 108(6): 477–483. Search in Google Scholar

Kuwana R. and H. Takamatsu. 2013. The GerW protein is essential for L-alanine-stimulated germination of Bacillus subtilis spores. J. Biochem. 154(5): 409–417. Search in Google Scholar

Lovdal I.S., C. From, E.H. Madslien, K.C. Romundset, E. Klufterud, J.T. Rosnes and P.E. Granum. 2012. Role of the gerA operon in L-alanine germination of Bacillus lichenoformis spores. BMC Microbiol. 12: 34.10.1186/1471-2180-12-34335920422420404 Search in Google Scholar

Luu S. and P. Setlow. 2014. Analysis of the loss in heat and acid resistance during germination of spores of Bacillus species. J. Bacteriol. 196(9): 1733–1740. Search in Google Scholar

Luu S., J. Cruz-Mora, B. Setlow, F.E. Feeherry, C.J. Doona and P. Setlow. 2015. The effects of heat activation on Bacillus spore germination, with nutrients or under pressure, with or without various germination proteins. Appl. Env. Microbiol. 81(8): 2927–293810.1128/AEM.00193-15437531325681191 Search in Google Scholar

McCann K.P., C. Robinson, R.L. Sammons, D.A. Smith and B.M. Corfe. 1996. Alanine germination receptors of Bacillus subtilis. Lett. Appl. Microbiol. 23: 290–294.10.1111/j.1472-765X.1996.tb00192.x8987707 Search in Google Scholar

Moir A., B.M. Corfe and J. Behravan. 2002. Spore germination. Cell Mol. Life Sci. 59: 403–409.10.1007/s00018-002-8432-811964118 Search in Google Scholar

Moir A. 2006. How do spores germinate? J. Appl. Microbiol. 101: 526–530.10.1111/j.1365-2672.2006.02885.x16907803 Search in Google Scholar

Mongkolthanaruk W., C. Robinson and A. Moir. 2013. Localization of the GerD spore germination protein in the Bacillus subtilis spore. Mocrobiol. 155: 1146–1151.10.1099/mic.0.023853-019332816 Search in Google Scholar

Nagler K., P. Setlow, K. Reineke, A. Driks and R. Moleller. 2015. Involvment of coat proteins in Bacillus subtilis spore germination in high salinity environments. Appl. Env. Microbiol. 81(19): 6725–6735. Search in Google Scholar

Pandey R., A.T. Beek, N.O. Vischer, J.P. Smelt, S. Brul and E.M. Manders. 2013. Live cell imaging of germination and outgrowth of individual Bacillus subtilis spores; the effect of heat stress quantitatively analyzed with SporeTracker. PLoS One 8(3): 1–10.10.1371/journal.pone.0058972360759923536843 Search in Google Scholar

Paredes-Sabja D., J.A. Torres, P. Setlow and M.R. Sarker. 2008. Clostridium perfringens spore germination: characterization of germinants and their receptors. J. Bacteriol. 190: 1190–1201.10.1128/JB.01748-07223822018083820 Search in Google Scholar

Parades-Sabja D., P. Setlow and M.R. Sarker. 2011. Germination of spores of Bacillus and Clostridiales species: mechanisms and proteins involved. Trends Microbiol. 19(2): 85–94.10.1016/j.tim.2010.10.00421112786 Search in Google Scholar

Porębska I., M. Rutkowska and B Sokołowska. 2015a. Decrease in optical density as a results of germination of Alicyclobacillus acidoterrestris spores under high hydrostatic pressure. High Press. Res. 35(1): 89–97.10.1080/08957959.2015.1006630 Search in Google Scholar

Porębska I., B. Sokołowska, Ł. Woźniak, Skąpska. S., M. Fonberg-Broczek, S.J. Rzoska. 2015b. DPA release and germination of Alicyclobacillus acidoterrestris under HHP. J. Nutr. Food Sci. 5: 6. Search in Google Scholar

Porębska I., B. Sokołowska and Ł. Łaniewska-Trokenheim. 2016. Effect of supercritical carbon dioxide on inactivation and germination of Alicyclobacillus acidoterrestris spores) (in Polish). Żywność. Nauka. Technol. 1(104).10.15193/zntj/2016/104/110 Search in Google Scholar

Ramirez N. and E. Abel-Santos. 2010. Requirements for germination of Clostridium sordellii spores in vitro. J. Bacteriol. 192: 418–425.10.1128/JB.01226-09280532319915025 Search in Google Scholar

Ramirez-Peralta A., P. Zhang and P. Setlow. 2012. Effect of sporulation conditions on the germination and germinations protein levels of Bacillus subtilis spores. Appl. Env. Microbiol. 78(8): 2689–2697. Search in Google Scholar

Reineke K., K. Schlumbach, D. Baier, A. Mathys and D. Knorr. 2013a. The release of dipicolinic acid – the rate-limiting step of Bacillus endospore inactivation during the high pressure thermal sterilization process. Int. J. Food Microbiol. 162: 55–63.10.1016/j.ijfoodmicro.2012.12.01023353555 Search in Google Scholar

Reineke K., A. Mathys, V. Heinz and D. Knorr. 2013b. Mechanisms of endospore inavtivation under high pressure. Trends Microbiol. 21(8): 296–304.10.1016/j.tim.2013.03.00123540831 Search in Google Scholar

Ross C. and E. Abel-Santos. 2010. The ger receptor family from sporulating bacteria. Curr. Issues Mol. Biol. 12(3): 147–158. Search in Google Scholar

Setlow B., A.E. Cowan and P. Setlow. 2003. Germination of spores of Bacillus subtilis with dodecylamine. J. Appl. Microbiol. 95: 637–645.10.1046/j.1365-2672.2003.02015.x12911713 Search in Google Scholar

Setlow B., S. Atluri, R. Kitchel, K. Koziol-Dube and P. Setlow. 2006. Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNA-protective α/β-type small acid-soluble proteins. J. Bacteriol. 188(11): 3740–3747.10.1128/JB.00212-06148292116707666 Search in Google Scholar

Setlow B., P.G. Wahome and P. Setlow. 2008. Release of small molecules during germinations of spores of Bacillus species. J. Bacteriol. 190(13): 4759–4763. Search in Google Scholar

Skąpska S., B. Sokołowska, A. Dekowska, M. Chotkiewicz and M. Fonberg-Broczek. 2012. Application of high pressure pasteurization to inactivate spores of Alicyclobacillus acidoterrestris in apple juice(in Polish). Żywność Nauka Technol. Jakość 3(82): 187–196. Search in Google Scholar

Sokołowska B., S. Skąpska, M. Fonberg-Broczek, J. Niezgoda, M. Chotkiewicz, A. Dekowska and S.J. Rzoska. 2012. The combined effect of high pressure and nisin or lysosyme on the inactivation Alicyclobacillus acidoterrestris spores in apple juice. High Pressure Res. 32(1): 119–127.10.1080/08957959.2012.664642 Search in Google Scholar

Sokołowska B., S. Skąpska, M. Fonberg-Broczek, J. Niezgoda, M. Chotkiewicz, A. Dekowska and S.J. Rzoska. 2013. Factors influencing the inactivation of Alicyclobacillus acidoterrestris spores exposed to high hydrostatic pressure in apple juice. High Pressure Res. 33(1): 73–82.10.1080/08957959.2013.772170 Search in Google Scholar

Sokołowska B. 2014. Alicyclobacillus – thermophilic acidophilic spore-forming bacteria – profile and prevalence (in Polish). Żywność Nauka Technol. Jakość 4(95): 5–17 Search in Google Scholar

Sokołowska B., S. Skąpska, M. Fonberg-Broczek, J. Niezgoda, I. Porębska, A. Dekowska and S.J. Rzoska. 2015. Germination and inactivation of Alicyclobacillus acidoterrestris spores induced by moderate hydrostatic pressure. Pol. J. Microbiol. 64(4): 351–359 Search in Google Scholar

Stewart K.A., X. Yi, S. Ghosh and P. Setlow. 2012. Germination protein levels and rates of germination of spores of Bacillus subtilis with overexpressed or deleted genes encoding germination proteins. J. Bacteriol. 194(12): 3156–3164.10.1128/JB.00405-12337083622493018 Search in Google Scholar

Terano H., K. Takahashi and Y. Sakakibara. 2005. Characterization of spore germination of a thermoacidophilic spore-forming bacterium, Alicyclobacillus acidoterrestris. Biosci. Biotechnol. Biochem. 69(6): 1217–1220. Search in Google Scholar

Tianli Y., Z. Jiangbo and Y. Yahong. 2014. Spoilage by Alicyclobacillus bacteria in juice and beverage products: chemical, physical, and combined control methods. Compr. Rev. Food Sci. 13(5): 771–797. Search in Google Scholar

Troiano A.J., J. Zhang, A.E. Cowan, J. Yu and P. Setlow. 2015. Analysis of the dynamics of a Bacillus subtilis spore germination protein complex during spore germination and outgrowth. J. Bacteriol. 197(2): 252–261. Search in Google Scholar

Vercammen A., B. Vivijs, I. Lurquin and C.W. Michiels. 2012. Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce. Int. J. Food Microbiol. 152(3): 162–167.10.1016/j.ijfoodmicro.2011.02.01921421274 Search in Google Scholar

Wang S., P. Setlow and Y. Li. 2015. Slow leakage of Ca-dipicolinic acid from individual Bacillus spores during initiation of spore germination. J. Bacteriol. 197(6): 1095–1103. Search in Google Scholar

Warth A.D. 1979. Liquid chromatographic determination of dipicolinic acid from bacterial spores. Appl. Environ. Microbiol. 38(6): 1029–1033. Search in Google Scholar

Wuytack E.Y., J. Soons, F. Pochet and C.W. Michiels. 2000. Comparative study of pressure and nutrient induced germination of Bacillus subtilis spores. Appl. Env. Microbiol. 666(1): 257–261. Search in Google Scholar

Yi X., J. Liu, J.R. Faeder and P. Setlow. 2011. Synergism between different germinant receptors in the germination of Bacillus subtilis spores. J. Bacteriol. 190(18): 4664–4671. Search in Google Scholar

Zhnag P., W. Garner, X. Yi, J. Yu, Y. Li and P. Setlow. 2010. Factors affecting variability in time between addition of nutrient germinants and rapid dipicolinic acid release during germination of spores of Bacillus species. J Bacteriol. 192(14): 3608–3619.10.1128/JB.00345-10289734320472791 Search in Google Scholar

Zhang J., W. Garner, P. Setlow and J. Yu. 2011. Quantitative analysis of spatial-temporal correlations during germination of spores of Bacilus species. J. Bacteriol. 193(15): 3765–3772. Search in Google Scholar

Zhang P., J. Liang, X. Yi, P. Setlow and Y. Li. 2014. Monitoring of commitment, blocking and continuation of nutrient germinations of individual Bacillus subtilis spores. J. Bacteriol. 196(13): 2443–2454. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo