1. bookVolume 65 (2016): Issue 4 (December 2016)
Journal Details
License
Format
Journal
eISSN
2544-4646
First Published
04 Mar 1952
Publication timeframe
4 times per year
Languages
English
access type Open Access

Characterization of Endolithic Culturable Microbial Communities in Carbonate Rocks from a Typical Karst Canyon in Guizhou (China)

Published Online: 28 Feb 2016
Volume & Issue: Volume 65 (2016) - Issue 4 (December 2016)
Page range: 413 - 423
Received: 09 Dec 2015
Accepted: 26 Aug 2016
Journal Details
License
Format
Journal
eISSN
2544-4646
First Published
04 Mar 1952
Publication timeframe
4 times per year
Languages
English
Abstract

The endolithic environment is a ubiquitous habitat for microorganisms and a critical interface between biology and geology. In this study, a culture-based method and the phylogenetic analysis based on 16S rRNA and internal transcribed spacer (ITS) sequences were used to investigate the diversity of endolithic bacteria and fungi in two main types of carbonate rocks (namely dolomite and limestone) from Nanjiang Canyon in Guizhou karst area, China. The results of bacterial diversity indicated that all bacteria isolated from dolomite and limestone rocks were divided into 4 bacterial groups, including Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. For these two kinds of rocks, Proteobacteria was the first dominant group, and Gammaproteobacteria occupied the greatest proportion which might be closely related to Pseudomonas in phylogeny to be the most dominant genera after isolation. Actinobacteria and Bacillus bacteria were also widespread in these two kinds of rock environments. There were only 9 and 8 strains of fungi isolated from dolomite and limestone respectively, which all belonged to Ascomycota. To the best of our knowledge, this is the first report on diversity of endolithic culturable bacteria and fungi in carbonate rocks in Guizhou karst region. These microorganisms may play an important and unprecedented role in the carbonate rock weathering during the long history of geological evolution.

Keywords

Altschul S.F., W. Gish, W. Miller, E.W. Myers and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.10.1016/S0022-2836(05)80360-2Search in Google Scholar

Belgini D.R.B., R.S. Dias, V.M. Siqueira, L.A.B. Valadares, J.M. Albanese, R.S. Souza, A.P.R. Torres, M.P. Sousa, C.C. Silva, S.O. De Paula and others. 2014. Culturable bacterial diversity from a feed water of a reverse osmosis system, evaluation of biofilm formation and biocontrol using phages. World J. Microb. Biot. 30: 2689–2700. Search in Google Scholar

Chen Y., B. Lian, Z.Y. Ying and Y. Tang. 2014. Weathering of carbonate rocks by biological soil crusts in Karst areas. J. Earth. Sci. 25: 662-667.10.1007/s12583-014-0455-1 Search in Google Scholar

Cole J.R., B. Chai, T.L. Marsh, R.J. Farris, Q. Wang, S.A. Kulam, S. Chandra, D.M. McGarrell, T.M. Schmidt, G.M. Garrity and others. 2003. The ribosomal database project (rdp-ii): Previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res. 31: 442–443.10.1093/nar/gkg03916548612520046 Search in Google Scholar

Cui Z.S., Q.L. Lai, C.M. Dong and Z.Z. Shao. 2008. Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ. Microbiol. 8: 2138–2149.10.1111/j.1462-2920.2008.01637.x270250418445026 Search in Google Scholar

De Leo F., A. Iero, G. Zammit and C.E. Urzì. 2012. Chemoorgano- trophic bacteria isolated from biodeteriorated surfaces in cave and catacombs. Int. J. Speleol. 2: 125–136.10.5038/1827-806X.41.2.1 Search in Google Scholar

Dong H.L., J.A. Rech, H.C. Jiang, H. Sun and B.J. Buck. 2007. Endolithic cyanobacteria in soil gypsum: Occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) deserts. J. Geophys. Res. 112: 339–343. Search in Google Scholar

Friedmann E.I. 1982. Endolithic microorganisms in the antarctic cold desert. Science 215: 1045–1053.10.1126/science.215.4536.104517771821 Search in Google Scholar

Gerrath J.F., J.A. Gerrath, U. Matthes and D.W. Larson. 2000. Endolithic algae and cyanobacteria from cliffs of the Niagara Escarpment, Ontario, Canada. Can. J. Bot. 78: 807–815. Search in Google Scholar

Gorbushina A.A., K. Whitehead, T. Dornieden, A. Niesse, A. Schulte and J.I. Hedges. 2003. Black fungal colonies as units of survival: Hyphal mycosporines synthesized by rock-dwelling microcolonial fungi. Can. J. Bot-Revue Canadienne Botan. 81: 131–138.10.1139/b03-011Search in Google Scholar

Gorbushina A.A., J. Heyrman, T. Dornieden, M. Gonzalez- Delvalle, W. E. Krumbein, L. Laiz, K. Petersen, C. Saiz-Jimenez and J. Swings. 2004. Bacterial and fungal diversity and biodeterioration problems in mural painting environments of st. Martins Church (Greene-kreiensen, Germany). Int. Biodeterior. Biodegrad. 53: 13–24.10.1016/j.ibiod.2003.07.003 Search in Google Scholar

Gorbushina A.A. 2007. Life on the rocks. Environ. Microbiol. 9: 1613–1631.10.1111/j.1462-2920.2007.01301.x17564597 Search in Google Scholar

Horath T. and R. Bachofen. 2009. Molecular characterization of an endolithic microbial community in Dolomite rock in the Central Alps (Switzerland). Microbial Ecol. 58: 290–306.10.1007/s00248-008-9483-719172216 Search in Google Scholar

Huber T., G. Faulkner and P. Hugenholtz. 2004. Bellerophon: A program to detect chimeric sequences in multiple sequence alignments. Bioinformatics. 20: 2317–2319.10.1093/bioinformatics/bth226 Search in Google Scholar

Kimura M. 1980. A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.10.1007/BF01731581 Search in Google Scholar

Krakova L., F. De Leo, L. Bruno, D. Pangallo and C. Urzi. 2015. Complex bacterial diversity in the white biofilms of the Catacombs of St. Callixtus in Rome evidenced by different investigation strategies. Environ. Microbiol. 84: 81–790.10.1111/1462-2920.12626 Search in Google Scholar

Kumar S., K. Tamura and M. Nei. 2004. Mega3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5: 150–163.10.1093/bib/5.2.150 Search in Google Scholar

Lian B., Y. Chen and Y. Tang. 2010. Microbes on carbonate rocks and pedogenesis in karst regions. J. Earth. Sci. 21: 293–296.10.1007/s12583-010-0240-8Search in Google Scholar

Lian B., D.X. Yuan and Z.H. Liu. 2011. Effect of microbes on karstification in karst ecosystems. Chinese Sci. Bull. 56: 3743–3747.10.1007/s11434-011-4648-z Search in Google Scholar

Ma Y.F., L. Wang and Z.Z. Shao. 2006. Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ. Microbiol. 8: 455–465. Search in Google Scholar

Papida S., W. Murphy and E. May. 2000. Enhancement of physical weathering of building stones by microbial populations. Int. Bio- deterior. Biodegrad. 46: 305–317.10.1016/S0964-8305(00)00102-5 Search in Google Scholar

Roldan M., C. Ascaso and J. Wierzchos. 2014. Fluorescent fingerprints of endolithic phototrophic cyanobacteria living within halite rocks in the Atacama desert. Appl. Environ. Microbiol. 80: 2998–3006.10.1128/AEM.03428-13401892824610843Search in Google Scholar

Selbmann L., E. Egidi, D. Isola, S. Onofri, G.S. de Hoog, S. Chinaglia, L. Testa, S. Tosi, A. Balestrazzi, A. Lantieri and others. 2013. Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosyst. 147: 237–246. Search in Google Scholar

Sigler W.V., R. Bachofen and J. Zeyer. 2003. Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland. Environ. Microbiol. 5: 618–627.10.1046/j.1462-2920.2003.00453.x12823194 Search in Google Scholar

Spring S., N. Brinkmann, M. Murrja, C. Sproer, J. Reitner and H.P. Klenk. 2015. High diversity of culturable prokaryotes in a lithifying hypersaline microbial mat. Geomicrobiol. J. 32: 332–346.10.1080/01490451.2014.913095 Search in Google Scholar

Stackebrandt E. and J. Ebers. 2006. Taxonomic parameters revisited: Tarnished gold standards. Microbiol. Today 33: 1525–1155. Search in Google Scholar

Sterflinger K. 2000. Fungi as geologic agents. Geomicrobiol. J. 17: 97–124.10.1080/01490450050023791 Search in Google Scholar

Tamaki H., Y. Sekiguchi, S. Hanada, K. Nakamura, N. Nomura, M. Matsumura and Y. Kamagata. 2005. Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl. Environ. Microbiol. 71: 2162–2169.10.1128/AEM.71.4.2162-2169.2005 Search in Google Scholar

Tang Y. and B. Lian. 2012. Diversity of endolithic fungal communities in dolomite and limestone rocks from Nanjiang Canyon in Guizhou karst area, China. Can. J. Microbiol. 58: 685–693.10.1139/w2012-042 Search in Google Scholar

Tang Y., B. Lian, H.L. Dong, D.F. Liu and W.G. Hou. 2012. Endolithic bacterial communities in dolomite and limestone rocks from the Nanjiang Canyon in Guizhou karst area (China). Geomicrobiol. J. 29: 213–225.10.1080/01490451.2011.558560 Search in Google Scholar

Thompson J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin and D.G. Higgins. 1997. The clustal_x windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876–4882.10.1093/nar/25.24.4876 Search in Google Scholar

Viles H.A. and A.A. Gorbushina. 2003. Soiling and microbial colo- niastion on urbon roadside limestone: A three year study in Oxford England. Build Environ. 38: 9–10.10.1016/S0360-1323(03)00078-7 Search in Google Scholar

Walker J.J. and N.R. Pace. 2007a. Endolithic microbial ecosystems. Annu. Rev. Microbiol. 61: 331–347.10.1146/annurev.micro.61.080706.09330217506683 Search in Google Scholar

Walker J.J. and N.R. Pace. 2007b. Phylogenetic composition of rocky mountain endolithic microbial ecosystems. Appl. Environ. Microbiol. 73: 3497–3504.10.1128/AEM.02656-06193266517416689 Search in Google Scholar

Wierzchos J., C. Ascaso and C.P. McKay. 2006. Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama desert. Astrobiology 6: 415–422.10.1089/ast.2006.6.41516805697 Search in Google Scholar

Wong F.K.Y., M.C.Y. Lau, D.C. Lacap, J.C. Aitchison, D.A. Cowan and S.B. Pointing. 2010. Endolithic microbial colonization of limestone in a high-altitude arid environment. Microbial. Ecol. 59: 689–699.10.1007/s00248-009-9607-819937324 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo