Open Access

The application of neural networks for the life-cycle analysis of road and rail rolling stock during the operational phase


Cite

Arena, M., Azzone, G., Conte, A. (2013). A streamlined LCA framework to support early decision making in vehicle development. Journal of Cleaner Production, 41(2), 105–113. https://doi.org/10.1016/j.jclepro.2012.09.03110.1016/j.jclepro.2012.09.031 Search in Google Scholar

Basu, A., Raja, B., Gracious, R., Vanajakshi, L. (2020). Dynamic trip planner for public transport using genetic algorithm. Transport, 35(2), 156–167. https://doi.org/10.3846/transport.2020.1247710.3846/transport.2020.12477 Search in Google Scholar

Birr, K. (2018). Mode choice modelling for urban areas. Technical Transactions, 6, 67–78. http://dx.doi.org/10.4467/2353737XCT.18.087.869210.4467/2353737XCT.18.087.8692 Search in Google Scholar

Buehler, R., Pucher, J. (2011). Making public transport financially sustainable. Transport Policy, 18(1), 126–138. https://doi.org/10.1016/j.tranpol.2010.07.00210.1016/j.tranpol.2010.07.002 Search in Google Scholar

Danilecki, K., Mrozik, M., Smurawski, P. (2017). Changes in the environmental profile of a popular passenger car over the last 30 years – Results of a simplified LCA study. Journal of Cleaner Production, 141(1), 208–218. https://doi.org/10.1016/j.jclepro.2016.09.05010.1016/j.jclepro.2016.09.050 Search in Google Scholar

Del Pero, F., Delogu, M., Pierini, M. (2017). The effect of lightweighting in automotive LCA perspective: Estimation of mass-induced fuel consumption reduction for gasoline turbocharged vehicles. Journal of Cleaner Production, 154(6), 566–577. https://doi.org/10.1016/j.jclepro.2017.04.01310.1016/j.jclepro.2017.04.013 Search in Google Scholar

Dudek, M., Richter, M., Solecka, K. (2018). A multi-criteria appraisal of the selection of means of urban passenger transport using the electre and ahp methods. Technical Transactions, 6, 79–94. http://dx.doi.org/10.4467/2353737XCT.18.088.869310.4467/2353737XCT.18.088.8693 Search in Google Scholar

Holmgren, J. (2007). Meta-analysis of public transport demand. Transportation Research Part A: Policy and Practice, 41(12), 1021–1035. https://doi.org/10.1016/j.tra.2007.06.00310.1016/j.tra.2007.06.003 Search in Google Scholar

Kiciński, M., Solecka, K. (2018). Application of MCDA/MCDM methods for an integrated urban public transportation system – case study, city of Cracow. Archives of Transport, 46(2), 71–84. https://doi.org/10.5604/01.3001.0012.210710.5604/01.3001.0012.2107 Search in Google Scholar

Konowrocki, R., Chojnacki, A. (2020). Analysis of rail vehicles’ operational reliability in the aspect of safety against derailment based on various methods of determining the assessment criterion. Eksploatacja i Niezawodność – Maintenance and reliability, 22(1), 73–85. http://dx.doi.org/10.17531/ein.2020.1.910.17531/ein.2020.1.9 Search in Google Scholar

Mrozik, M., Eliasz, J., Terelak-Tymczyna, A. (2013). Material-energy model of motor vehicle life cycle. Strojarstvo, 55(2), 161–168. Search in Google Scholar

Niewczas, A., Rymarz, J., Debicka, E. (2019). Stages of operating vehicles with respect to operational efficiency using city buses as an example. Eksploatacja i Niezawodność – Maintenance and Reliability, 21(1), 21–27. http://dx.doi.org/10.17531/ein.2019.1.310.17531/ein.2019.1.3 Search in Google Scholar

Paulley, N., Balcombe, R., Mackett, R., Titheridge, H., Preston, J., Wardman, M., Shires, J., White, P. (2006). The demand for public transport: The effects of fares, quality of service, income and car ownership. Transport Policy, 13(7), 296–305. https://doi.org/10.1016/j.tranpol.2005.12.00410.1016/j.tranpol.2005.12.004 Search in Google Scholar

Pravilonis, T., Sokolovskij, E. (2020). Analysis of composite material properties and their possibilities to use them in bus frame construction. Transport, 35(4), 368–378. https://doi.org/10.3846/transport.2020.1301810.3846/transport.2020.13018 Search in Google Scholar

Pucher, J., Buehler, R. (2009). Integrating Bicycling and Public Transport in North America. Journal of Public Transportation, 12(3), 79–104. http://doi.org/10.5038/2375-0901.12.3.510.5038/2375-0901.12.3.5 Search in Google Scholar

Raugei, M., Winfield, P. (2019). Prospective LCA of the production and EoL recycling of a novel type of Li-ion battery for electric vehicles. Journal of Cleaner Production, 213(3), 926–932. https://doi.org/10.1016/j.jclepro.2018.12.23710.1016/j.jclepro.2018.12.237 Search in Google Scholar

Selech, J., Andrzejczak, K. (2020). An aggregate criterion for selecting a distribution for times to failure of components of rail vehicles. Eksploatacja i Niezawodność – Maintenance and reliability, 22(1), 102–111. http://dx.doi.org/10.17531/ein.2020.1.1210.17531/ein.2020.1.12 Search in Google Scholar

Świderski, A., Jóźwiak, A., Jachimowski, R. (2018). Operational quality measures of vehicles applied for the transport services evaluation using artificial neural networks. Eksploatacja i Niezawodność – Maintenance and Reliability, 20(2), 292–299. http://dx.doi.org/10.17531/ein.2018.2.1610.17531/ein.2018.2.16 Search in Google Scholar

Thompson, K., Schofield, P. (2007). An investigation of the relationship between public transport performance and destination satisfaction. Journal of transport geography, 15(3), 136–144. https://doi.org/10.1016/j.jtrangeo.2006.11.00410.1016/j.jtrangeo.2006.11.004 Search in Google Scholar

http://www.infotram.pl (access: 9.07.2020). Search in Google Scholar

http://www.pesa.pl (access: 19.10.2020). Search in Google Scholar

http://www.pim.pl (access: 9.07.2020). Search in Google Scholar

http://www.solarisbus.com (access: 19.10.2020). Search in Google Scholar

http://www.spak.pl (access: 3.07.2020). Search in Google Scholar

http://www.ts.szczecin.pl (access: 3.07.2020). Search in Google Scholar