This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Aghajan M.H., Panahi-Sarmad M., Alikarami N., Shojaei S., Saeidi A., Khonakdar H.A. et al., Using solventfree approach for preparing innovative biopolymer nanocomposites based on PGS/gelatin, Eur. Polym. J., 2020, 131, 109720.Search in Google Scholar
Aydin H.M., Salimi K., Rzayev Z.M.O., Pişkin E., Microwave- assisted rapid synthesis of poly(glycerol-sebacate) elastomers, Biomater. Sci., 2013, 1, 5, 503–509.Search in Google Scholar
Calvo-Correas T., Gabilondo N., Alonso-Varona A., Palomares T., Corcuera M.A., Eceiza A., Shape-memory properties of crosslinked biobased polyurethanes, Eur. Polym. J., 2016, 78, 253–263.Search in Google Scholar
Chen Q.Z., Bismarck A., Hansen U., Junaid S., Tran M.Q., Harding S.E. et al., Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue, Biomaterials, 2008, 29, 1, 47–57.Search in Google Scholar
Deniz P., Guler S., Çelik E., Hosseinian P., Aydin H.M., Use of cyclic strain bioreactor for the upregulation of key tenocyte gene expression on poly(glycerol-sebacate) (PGS) sheets, Mater Sci. Eng. C., 2020, 106, 110293.Search in Google Scholar
Fakhri V., Jafari A., Shafiei M.A., Ehteshamfar M.V., Khalighiyan S., Hosseini H. et al., Development of physical, mechanical, antibacterial and cell growth properties of poly(glycerol sebacate urethane) (PGSU) with helping of curcumin and hydroxyapatite nanoparticles, Polym. Chem., 2021, 12, 43, 6263–6282.Search in Google Scholar
Frydrych M., Chen B., Fabrication, structure and properties of three-dimensional biodegradable poly(glycerol sebacate urethane) scaffolds, Polymer, 2017, 122, 159–168.Search in Google Scholar
Gadomska-Gajadhur A., Wrzecionek M., Matyszczak G., Piętowski P., Więcław M., Ruśkowski P., Optimization of poly(glycerol sebacate) Synthesis for Biomedical Purposes with the Design of Experiments, Org. Process Res. Dev., 2018, 22, 12, 1793–1800.Search in Google Scholar
Guilak F., Ratcliffe A., Mow V.C., Chondrocyte deformation and local tissue strain in articular cartilage: A confocal microscopy study, J. Orthop. Res., 1996, 13, 3, 410–421.Search in Google Scholar
Guo X.L., Lu X.L., Dong D.L., Sun Z.J., Characterization and optimization of glycerol/sebacate ratio in poly(glycerolsebacate) elastomer for cell culture application, J. Biomed. Mater Res. A., 2014, 102, 11, 3903–3907.Search in Google Scholar
Hu J., Kai D., Ye H., Tian L., Ding X., Ramakrishna S. et al., Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering, Mater Sci. Eng. C., 2017, 70, 1089–1094.Search in Google Scholar
Jena K.K., Raju K.V.S.N., Prathab B., Aminabhavi T.M., Hyperbranched polyesters: Synthesis, characterization, and molecular simulations, J. Phys. Chem. B., 2007, 111, 30, 8801–8811.Search in Google Scholar
Jia Y., Wang W., Zhou X., Nie W., Chen L., He C., Synthesis and characterization of poly(glycerol sebacate)-based elastomeric copolyesters for tissue engineering applications, Polym. Chem., 2016, 7, 14, 2553–2564.Search in Google Scholar
Kerativitayanan P., Gaharwar A.K., Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates, Acta Biomater., 2015, 26, 34–44.Search in Google Scholar
Koons G.L., Diba M., Mikos A.G., Materials design for bonetissue engineering, Nat. Rev. Mater, 2020, 5, 8, 584–603.Search in Google Scholar
Liang B., Shi Q., Xu J., Chai Y.M., Xu J.-G, Poly (Glycerol Sebacate)-Based Bio-Artificial Multiporous Matrix for Bone Regeneration, Front. Chem., 2020, 8, 1097.Search in Google Scholar
Lin D., Cai B., Wang L., Cai L., Wang Z., Xie J. et al., A viscoelastic PEGylated poly(glycerol sebacate)-based bilayer scaffold for cartilage regeneration in full-thickness osteochondral defect, Biomaterials, 2020, 253, 120095.Search in Google Scholar
Liu Q., Tian M., Ding T., Shi R., Feng Y., Zhang L. et al., Preparation and characterization of a thermoplastic poly(glycerol sebacate) elastomer by two-step method, J. Appl. Polym. Sci., 2007, 103, 3, 1412–1419.Search in Google Scholar
Li Y., Huang W., Cook W.D., Chen Q., A comparative study on poly(xylitol sebacate) and poly(glycerol sebacate): Mechanical properties, biodegradation and cytocompatibility, Biomed. Mater, 2013, 8, 3.Search in Google Scholar
Loh X.J., Abdul Karim A., Owh C., Poly(glycerol sebacate) biomaterial: synthesis and biomedical applications, J. Mater Chem. B., 2015, 3, 39, 7641–7652.Search in Google Scholar
Manzanedo D., Allen S.M., Biorubber (PGS): evaluation of a novel biodegradable elastomer, 2006, Available at: https://dspace.mit.edu/handle/1721.1/37687 [Accessed: November 23, 2022].Search in Google Scholar
Martín-Cabezuelo R., Rodríguez-Hernández J.C., Vilariño-Feltrer G., Vallés-Lluch A., Role of curing temperature of poly(glycerol sebacate) substrates on proteincell interaction and early cell adhesion, Polymers (Basel), 2021, 13, 3, 1–14.Search in Google Scholar
Ma Y., Zhang W., Wang Z., Wang Z., Xi Q., Niu H. et al., PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity, Acta Biomater., 2016, 44, 110–124.Search in Google Scholar
Matyszczak G., Wrzecionek M., Gadomska-Gajadhur A., Ruśkowski P., Kinetics of Polycondensation of Sebacic Acid with Glycerol, Org. Process Res. Dev., 2020, 24, 6, 1104–1111.Search in Google Scholar
Monem M., Ahmadi Z., Fakhri V., Goodarzi V., Preparing and characterization of poly(glycerol-sebacic acid-urethane) (PGSU) nanocomposites: clearing role of unmodified and modified clay nanoparticles, J. Polym. Res., 2022, 29, 25.Search in Google Scholar
Nijst C.L.E., Bruggeman J.P., Karp J.M., Ferreira L., Zumbuehl A., Bettinger C.J. et al., Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate), Biomacromolecules, 2007, 8, 10, 3067–3073.Search in Google Scholar
Orlovskii V.P., Komlev V.S., Barinov S.M., Hydroxyapatite and hydroxyapatite-based ceramics, Inorg. Mater., 2002 38, 10, 973–984.Search in Google Scholar
Perin G.B., Felisberti M.I., Enzymatic Synthesis of Poly(glycerol sebacate): Kinetics, Chain Growth, and Branching Behavior, Macromolecules, 2020, 53, 18, 7925–7935.Search in Google Scholar
Piszko P., Kryszak B., Piszko A., Szustakiewicz K., Brief review on poly(glycerol sebacate) as an emerging polyester in biomedical application: Structure, properties and modifications, Polim. Med., 2021, 51, 1, 43–50.Search in Google Scholar
Piszko P., Włodarczyk M., Zielińska S., Gazińska M., Płociński P., Rudnicka K. et al., PGS/HAp Microporous Composite Scaffold Obtained in the TIPS-TCL-SL Method: An Innovation for Bone Tissue Engineering, Int. J. Mol. Sci., 2021, 22, 16, 8587.Search in Google Scholar
Pomerantseva I., Krebs N., Hart A., Neville C.M., Huang A.Y., Sundback C.A., Degradation behavior of poly(glycerol sebacate), J. Biomed. Mater Res. A., 2009, 91, 4, 1038–1047.Search in Google Scholar
Rai R., Tallawi M., Barbani N., Frati C., Madeddu D., Cavalli S. et al., Biomimetic poly(glycerol sebacate) (PGS) membranes for cardiac patch application, Mater Sci. Eng. C., 2013, 33, 7, 3677–3687.Search in Google Scholar
Rai R., Tallawi M., Grigore A., Boccaccini A.R., Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review, Prog. Polym. Sci., 2012, 37, 8, 1051–1078.Search in Google Scholar
Rostamian M., Kalaee M.R., Dehkordi S.R., Panahi-Sarmad M., Tirgar M., Goodarzi V., Design and characterization of poly(glycerol-sebacate)-co-poly(caprolactone) (PGS-co-PCL) and its nanocomposites as novel biomaterials: The promising candidate for soft tissue engineering, Eur. Polym. J., 2020, 138, 109985.Search in Google Scholar
Saudi A., Rafienia M., Zargar Kharazi A., Salehi H., Zarrabi A., Karevan M., Design and fabrication of poly (glycerol sebacate)-based fibers for neural tissue engineering: Synthesis, electrospinning, and characterization, Polym. Adv. Technol., 2019, 30, 6, 1427–1440.Search in Google Scholar
Sencadas V., Sadat S., Silva D.M., Mechanical performance of elastomeric PGS scaffolds under dynamic conditions, J. Mech. Behav. Biomed. Mater, 2020, 102, 103474.Search in Google Scholar
Singh D., Harding A.J., Albadawi E., Boissonade F.M., Haycock J.W., Claeyssens F., Additive manufactured biodegradable poly(glycerol sebacate methacrylate) nerve guidance conduits, Acta Biomater., 2018, 78, 48–63.Search in Google Scholar
Sperling L.H., Introduction to Physical Polymer Science, Fourth Ed., 2005.Search in Google Scholar
Sun L., Ma Y., Niu H., Liu Y., Yuan Y., Liu C. et al., Recapitulation of In Situ Endochondral Ossification Using an Injectable Hypoxia-Mimetic Hydrogel, Adv. Funct. Mater, 2021, 31, 5, 2008515.Search in Google Scholar
Sun Z.J., Chen C., Sun M.Z., Ai C.H., Lu X.L., Zheng Y.F. et al., The application of poly (glycerol–sebacate) as biodegradable drug carrier, Biomaterials, 2009, 30, 28, 5209–5214.Search in Google Scholar
Theerathanagorn T., Thavornyutikarn B., Janvikul W., Preparation and characterization of plasma-treated porous poly(glycerol sebacate) scaffolds, Adv. Mat. Res., 2013, 747, 182–185.Search in Google Scholar
Wang Y., Ameer G.A., Sheppard B.J., Langer R., A tough biodegradable elastomer, Nat. Biotechnol., 2002, 20, 6, 602–606.Search in Google Scholar
Wang Z., Ma Y., Wang Y.X., Liu Y., Chen K., Wu Z. et al., Urethane-based low-temperature curing, highly-customized and multifunctional poly(glycerol sebacate)-co-poly(ethylene glycol) copolymers, Acta Biomater., 2018, 71, 279–292.Search in Google Scholar
Wu Z., Jin K., Wang L., Fan Y., Effect of curing time on the mechanical properties of poly(glycerol sebacate), J. Appl. Polym. Sci., 2023, 140, 14.Search in Google Scholar
Xiao B., Yang W., Lei D., Huang J., Yin Y., Zhu Y. et al., PGS Scaffolds Promote the In Vivo Survival and Directional Differentiation of Bone Marrow Mesenchymal Stem Cells Restoring the Morphology and Function of Wounded Rat Uterus, Adv. Healthc. Mater, 2019, 8, 5, 1801455Search in Google Scholar
Yang K., Zhang J., Ma X., Ma Y., Kan C., Ma H. et al., β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering, Mater. Sci. Eng. C., 2015, 56, 37–47.Search in Google Scholar
Zaky S.H., Lee K.W., Gao J., Jensen A., Verdelis K., Wang Y. et al., Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone, Acta Biomater., 2017, 54, 95–106.Search in Google Scholar
Zhang P., Hong Z., Yu T., Chen X., Jing X., In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(l-lactide), Biomaterials, 2009, 30, 1, 58–70.Search in Google Scholar