Accesso libero

Influence of cross-linking time on physico-chemical and mechanical properties of bulk poly(glycerol sebacate)

,  e   
26 apr 2023
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Aghajan M.H., Panahi-Sarmad M., Alikarami N., Shojaei S., Saeidi A., Khonakdar H.A. et al., Using solventfree approach for preparing innovative biopolymer nanocomposites based on PGS/gelatin, Eur. Polym. J., 2020, 131, 109720. Search in Google Scholar

Aydin H.M., Salimi K., Rzayev Z.M.O., Pişkin E., Microwave- assisted rapid synthesis of poly(glycerol-sebacate) elastomers, Biomater. Sci., 2013, 1, 5, 503–509. Search in Google Scholar

Calvo-Correas T., Gabilondo N., Alonso-Varona A., Palomares T., Corcuera M.A., Eceiza A., Shape-memory properties of crosslinked biobased polyurethanes, Eur. Polym. J., 2016, 78, 253–263. Search in Google Scholar

Chen Q.Z., Bismarck A., Hansen U., Junaid S., Tran M.Q., Harding S.E. et al., Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue, Biomaterials, 2008, 29, 1, 47–57. Search in Google Scholar

Deniz P., Guler S., Çelik E., Hosseinian P., Aydin H.M., Use of cyclic strain bioreactor for the upregulation of key tenocyte gene expression on poly(glycerol-sebacate) (PGS) sheets, Mater Sci. Eng. C., 2020, 106, 110293. Search in Google Scholar

Fakhri V., Jafari A., Shafiei M.A., Ehteshamfar M.V., Khalighiyan S., Hosseini H. et al., Development of physical, mechanical, antibacterial and cell growth properties of poly(glycerol sebacate urethane) (PGSU) with helping of curcumin and hydroxyapatite nanoparticles, Polym. Chem., 2021, 12, 43, 6263–6282. Search in Google Scholar

Frydrych M., Chen B., Fabrication, structure and properties of three-dimensional biodegradable poly(glycerol sebacate urethane) scaffolds, Polymer, 2017, 122, 159–168. Search in Google Scholar

Gadomska-Gajadhur A., Wrzecionek M., Matyszczak G., Piętowski P., Więcław M., Ruśkowski P., Optimization of poly(glycerol sebacate) Synthesis for Biomedical Purposes with the Design of Experiments, Org. Process Res. Dev., 2018, 22, 12, 1793–1800. Search in Google Scholar

Guilak F., Ratcliffe A., Mow V.C., Chondrocyte deformation and local tissue strain in articular cartilage: A confocal microscopy study, J. Orthop. Res., 1996, 13, 3, 410–421. Search in Google Scholar

Guo X.L., Lu X.L., Dong D.L., Sun Z.J., Characterization and optimization of glycerol/sebacate ratio in poly(glycerolsebacate) elastomer for cell culture application, J. Biomed. Mater Res. A., 2014, 102, 11, 3903–3907. Search in Google Scholar

Hu J., Kai D., Ye H., Tian L., Ding X., Ramakrishna S. et al., Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering, Mater Sci. Eng. C., 2017, 70, 1089–1094. Search in Google Scholar

Jena K.K., Raju K.V.S.N., Prathab B., Aminabhavi T.M., Hyperbranched polyesters: Synthesis, characterization, and molecular simulations, J. Phys. Chem. B., 2007, 111, 30, 8801–8811. Search in Google Scholar

Jia Y., Wang W., Zhou X., Nie W., Chen L., He C., Synthesis and characterization of poly(glycerol sebacate)-based elastomeric copolyesters for tissue engineering applications, Polym. Chem., 2016, 7, 14, 2553–2564. Search in Google Scholar

Kerativitayanan P., Gaharwar A.K., Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates, Acta Biomater., 2015, 26, 34–44. Search in Google Scholar

Koons G.L., Diba M., Mikos A.G., Materials design for bonetissue engineering, Nat. Rev. Mater, 2020, 5, 8, 584–603. Search in Google Scholar

Liang B., Shi Q., Xu J., Chai Y.M., Xu J.-G, Poly (Glycerol Sebacate)-Based Bio-Artificial Multiporous Matrix for Bone Regeneration, Front. Chem., 2020, 8, 1097. Search in Google Scholar

Lin D., Cai B., Wang L., Cai L., Wang Z., Xie J. et al., A viscoelastic PEGylated poly(glycerol sebacate)-based bilayer scaffold for cartilage regeneration in full-thickness osteochondral defect, Biomaterials, 2020, 253, 120095. Search in Google Scholar

Liu Q., Tian M., Ding T., Shi R., Feng Y., Zhang L. et al., Preparation and characterization of a thermoplastic poly(glycerol sebacate) elastomer by two-step method, J. Appl. Polym. Sci., 2007, 103, 3, 1412–1419. Search in Google Scholar

Li Y., Huang W., Cook W.D., Chen Q., A comparative study on poly(xylitol sebacate) and poly(glycerol sebacate): Mechanical properties, biodegradation and cytocompatibility, Biomed. Mater, 2013, 8, 3. Search in Google Scholar

Loh X.J., Abdul Karim A., Owh C., Poly(glycerol sebacate) biomaterial: synthesis and biomedical applications, J. Mater Chem. B., 2015, 3, 39, 7641–7652. Search in Google Scholar

Manzanedo D., Allen S.M., Biorubber (PGS): evaluation of a novel biodegradable elastomer, 2006, Available at: https://dspace.mit.edu/handle/1721.1/37687 [Accessed: November 23, 2022]. Search in Google Scholar

Martín-Cabezuelo R., Rodríguez-Hernández J.C., Vilariño-Feltrer G., Vallés-Lluch A., Role of curing temperature of poly(glycerol sebacate) substrates on proteincell interaction and early cell adhesion, Polymers (Basel), 2021, 13, 3, 1–14. Search in Google Scholar

Ma Y., Zhang W., Wang Z., Wang Z., Xi Q., Niu H. et al., PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity, Acta Biomater., 2016, 44, 110–124. Search in Google Scholar

Matyszczak G., Wrzecionek M., Gadomska-Gajadhur A., Ruśkowski P., Kinetics of Polycondensation of Sebacic Acid with Glycerol, Org. Process Res. Dev., 2020, 24, 6, 1104–1111. Search in Google Scholar

Monem M., Ahmadi Z., Fakhri V., Goodarzi V., Preparing and characterization of poly(glycerol-sebacic acid-urethane) (PGSU) nanocomposites: clearing role of unmodified and modified clay nanoparticles, J. Polym. Res., 2022, 29, 25. Search in Google Scholar

Nijst C.L.E., Bruggeman J.P., Karp J.M., Ferreira L., Zumbuehl A., Bettinger C.J. et al., Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate), Biomacromolecules, 2007, 8, 10, 3067–3073. Search in Google Scholar

Orlovskii V.P., Komlev V.S., Barinov S.M., Hydroxyapatite and hydroxyapatite-based ceramics, Inorg. Mater., 2002 38, 10, 973–984. Search in Google Scholar

Perin G.B., Felisberti M.I., Enzymatic Synthesis of Poly(glycerol sebacate): Kinetics, Chain Growth, and Branching Behavior, Macromolecules, 2020, 53, 18, 7925–7935. Search in Google Scholar

Piszko P., Kryszak B., Piszko A., Szustakiewicz K., Brief review on poly(glycerol sebacate) as an emerging polyester in biomedical application: Structure, properties and modifications, Polim. Med., 2021, 51, 1, 43–50. Search in Google Scholar

Piszko P., Włodarczyk M., Zielińska S., Gazińska M., Płociński P., Rudnicka K. et al., PGS/HAp Microporous Composite Scaffold Obtained in the TIPS-TCL-SL Method: An Innovation for Bone Tissue Engineering, Int. J. Mol. Sci., 2021, 22, 16, 8587. Search in Google Scholar

Pomerantseva I., Krebs N., Hart A., Neville C.M., Huang A.Y., Sundback C.A., Degradation behavior of poly(glycerol sebacate), J. Biomed. Mater Res. A., 2009, 91, 4, 1038–1047. Search in Google Scholar

Rai R., Tallawi M., Barbani N., Frati C., Madeddu D., Cavalli S. et al., Biomimetic poly(glycerol sebacate) (PGS) membranes for cardiac patch application, Mater Sci. Eng. C., 2013, 33, 7, 3677–3687. Search in Google Scholar

Rai R., Tallawi M., Grigore A., Boccaccini A.R., Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review, Prog. Polym. Sci., 2012, 37, 8, 1051–1078. Search in Google Scholar

Rostamian M., Kalaee M.R., Dehkordi S.R., Panahi-Sarmad M., Tirgar M., Goodarzi V., Design and characterization of poly(glycerol-sebacate)-co-poly(caprolactone) (PGS-co-PCL) and its nanocomposites as novel biomaterials: The promising candidate for soft tissue engineering, Eur. Polym. J., 2020, 138, 109985. Search in Google Scholar

Saudi A., Rafienia M., Zargar Kharazi A., Salehi H., Zarrabi A., Karevan M., Design and fabrication of poly (glycerol sebacate)-based fibers for neural tissue engineering: Synthesis, electrospinning, and characterization, Polym. Adv. Technol., 2019, 30, 6, 1427–1440. Search in Google Scholar

Sencadas V., Sadat S., Silva D.M., Mechanical performance of elastomeric PGS scaffolds under dynamic conditions, J. Mech. Behav. Biomed. Mater, 2020, 102, 103474. Search in Google Scholar

Singh D., Harding A.J., Albadawi E., Boissonade F.M., Haycock J.W., Claeyssens F., Additive manufactured biodegradable poly(glycerol sebacate methacrylate) nerve guidance conduits, Acta Biomater., 2018, 78, 48–63. Search in Google Scholar

Sperling L.H., Introduction to Physical Polymer Science, Fourth Ed., 2005. Search in Google Scholar

Sun L., Ma Y., Niu H., Liu Y., Yuan Y., Liu C. et al., Recapitulation of In Situ Endochondral Ossification Using an Injectable Hypoxia-Mimetic Hydrogel, Adv. Funct. Mater, 2021, 31, 5, 2008515. Search in Google Scholar

Sun Z.J., Chen C., Sun M.Z., Ai C.H., Lu X.L., Zheng Y.F. et al., The application of poly (glycerol–sebacate) as biodegradable drug carrier, Biomaterials, 2009, 30, 28, 5209–5214. Search in Google Scholar

Theerathanagorn T., Thavornyutikarn B., Janvikul W., Preparation and characterization of plasma-treated porous poly(glycerol sebacate) scaffolds, Adv. Mat. Res., 2013, 747, 182–185. Search in Google Scholar

Wang Y., Ameer G.A., Sheppard B.J., Langer R., A tough biodegradable elastomer, Nat. Biotechnol., 2002, 20, 6, 602–606. Search in Google Scholar

Wang Z., Ma Y., Wang Y.X., Liu Y., Chen K., Wu Z. et al., Urethane-based low-temperature curing, highly-customized and multifunctional poly(glycerol sebacate)-co-poly(ethylene glycol) copolymers, Acta Biomater., 2018, 71, 279–292. Search in Google Scholar

Wu Z., Jin K., Wang L., Fan Y., Effect of curing time on the mechanical properties of poly(glycerol sebacate), J. Appl. Polym. Sci., 2023, 140, 14. Search in Google Scholar

Xiao B., Yang W., Lei D., Huang J., Yin Y., Zhu Y. et al., PGS Scaffolds Promote the In Vivo Survival and Directional Differentiation of Bone Marrow Mesenchymal Stem Cells Restoring the Morphology and Function of Wounded Rat Uterus, Adv. Healthc. Mater, 2019, 8, 5, 1801455 Search in Google Scholar

Yang K., Zhang J., Ma X., Ma Y., Kan C., Ma H. et al., β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering, Mater. Sci. Eng. C., 2015, 56, 37–47. Search in Google Scholar

Zaky S.H., Lee K.W., Gao J., Jensen A., Verdelis K., Wang Y. et al., Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone, Acta Biomater., 2017, 54, 95–106. Search in Google Scholar

Zhang P., Hong Z., Yu T., Chen X., Jing X., In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(l-lactide), Biomaterials, 2009, 30, 1, 58–70. Search in Google Scholar