This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abaza AF, El Shazly SA, Selim HSA, Aly GSA. Metallo-beta-lactamase producing Pseudomonas aeruginosa in a healthcare setting in Alexandria, Egypt. Pol J Microbiol. 2017 Sep;66(3):297–308. https://doi.org/10.5604/01.3001.0010.4855AbazaAFEl ShazlySASelimHSAAlyGSA.Metallo-beta-lact-amase producing Pseudomonas aeruginosa in a healthcare setting in Alexandria, Egypt. Pol J Microbiol. 2017Sep;66(3):297–308. https://doi.org/10.5604/01.3001.0010.4855Search in Google Scholar
Alav I, Sutton JM, Rahman KM. Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother. 2018 Aug;73(8):2003–2020. https://doi.org/10.1093/jac/dky042AlavISuttonJMRahmanKM.Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother. 2018Aug;73(8):2003–2020. https://doi.org/10.1093/jac/dky042Search in Google Scholar
Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen AV, Cheng AA, Liu S, et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020 Jan;48(D1):D517–D525. https://doi.org/10.1093/nar/gkz935AlcockBPRaphenyaARLauTTYTsangKKBouchardMEdalatmandAHuynhWNguyenAVChengAALiuSCARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020Jan;48(D1):D517–D525. https://doi.org/10.1093/nar/gkz935Search in Google Scholar
Avakh A, Grant GD, Cheesman MJ, Kalkundri T, Hall S. The art of war with Pseudomonas aeruginosa: Targeting Mex efflux pumps directly to strategically enhance antipseudomonal drug efficacy. Antibiotics. 2023;12(8):1304. https://doi.org/10.3390/antibiotics12081304AvakhAGrantGDCheesmanMJKalkundriTHallS.The art of war with Pseudomonas aeruginosa: Targeting Mex efflux pumps directly to strategically enhance antipseudomonal drug efficacy. Antibiotics. 2023;12(8):1304. https://doi.org/10.3390/antibiotics12081304Search in Google Scholar
Bai Y, Gong YE, Shen F, Li H, Cheng Y, Guo J, Liu G, Ji AF. Molecular epidemiological characteristics of carbapenem-resistant Pseudomonas aeruginosa clinical isolates in southeast Shanxi, China. J Glob Antimicrob Resist. 2024 Mar;36:301–306. https://doi.org/10.1016/j.jgar.2023.12.029BaiYGongYEShenFLiHChengYGuoJLiuGJiAF.Molecular epidemiological characteristics of carbapenem-resistant Pseudomonas aeruginosa clinical isolates in southeast Shanxi, China. J Glob Antimicrob Resist. 2024Mar;36:301–306. https://doi.org/10.1016/j.jgar.2023.12.029Search in Google Scholar
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020 Dec;75(12):3491–3500. https://doi.org/10.1093/jac/dkaa345BortolaiaVKaasRSRuppeERobertsMCSchwarzSCattoirVPhilipponAAllesoeRLRebeloARFlorensaAFResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020Dec;75(12):3491–3500. https://doi.org/10.1093/jac/dkaa345Search in Google Scholar
Cabrera R, Fernández-Barat L, Vázquez N, Alcaraz-Serrano V, Bueno-Freire L, Amaro R, López-Aladid R, Oscanoa P, Muñoz L, Vila J, et al. Resistance mechanisms and molecular epidemiology of Pseudomonas aeruginosa strains from patients with bronchiectasis. J Antimicrob Chemother. 2022 May;77(6):1600–1610. https://doi.org/10.1093/jac/dkac084CabreraRFernández-BaratLVázquezNAlcaraz-SerranoVBueno-FreireLAmaroRLópez-AladidROscanoaPMuñozLVilaJResistance mechanisms and molecular epidemiology of Pseudomonas aeruginosa strains from patients with bronchiectasis. J Antimicrob Chemother. 2022May;77(6):1600–1610. https://doi.org/10.1093/jac/dkac084Search in Google Scholar
Chairat S, Ben Yahia H, Rojo-Bezares B, Sáenz Y, Torres C, Ben Slama K. High prevalence of imipenem-resistant and metallo-beta-lactamase-producing Pseudomonas aeruginosa in the Burns Hospital in Tunisia: Detection of a novel class 1 integron. J Chemother. 2019 May;31(3):120–126. https://doi.org/10.1080/1120009x.2019.1582168ChairatSBen YahiaHRojo-BezaresBSáenzYTorresCBen SlamaK.High prevalence of imipenem-resistant and metallo-beta-lactamase-producing Pseudomonas aeruginosa in the Burns Hospital in Tunisia: Detection of a novel class 1 integron. J Chemother. 2019May;31(3):120–126. https://doi.org/10.1080/1120009x.2019.1582168Search in Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018 Sep;34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560ChenSZhouYChenYGuJ.fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018Sep;34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560Search in Google Scholar
CLSI. Performance standards for antimicrobial susceptibility testing. 31st ed. CLSI supplement M100. Wayne (USA): Clinical and Laboratory Standards Institute; 2021.CLSI. Performance standards for antimicrobial susceptibility testing. 31st ed. CLSI supplement M100. Wayne (USA): Clinical and Laboratory Standards Institute; 2021.Search in Google Scholar
Çopur Çiçek A, Ertürk A, Ejder N, Rakici E, Kostakoğlu U, Esen Yıldız İ, Özyurt S, Sönmez E. Screening of antimicrobial resistance genes and epidemiological features in hospital and community-associated carbapenem-resistant Pseudomonas aeruginosa infections. Infect Drug Resist. 2021 Apr;14:1517–1526. https://doi.org/10.2147/idr.s299742Çopur ÇiçekAErtürkAEjderNRakiciEKostakoğluUEsen YıldızİÖzyurtSSönmezE.Screening of antimicrobial resistance genes and epidemiological features in hospital and community-associated carbapenem-resistant Pseudomonas aeruginosa infections. Infect Drug Resist. 2021Apr;14:1517–1526. https://doi.org/10.2147/idr.s299742Search in Google Scholar
de Paula-Petroli SB, Campana EH, Bocchi M, Bordinhão T, Picão RC, Yamada-Ogatta SF, Carrara-Marroni FE. Early detection of a hypervirulent KPC-2-producing Pseudomonas aeruginosa ST235 in Brazil. J Glob Antimicrob Resist. 2018 Mar;12:153–154. https://doi.org/10.1016/j.jgar.2018.01.014de Paula-PetroliSBCampanaEHBocchiMBordinhãoTPicãoRCYamada-OgattaSFCarrara-MarroniFE.Early detection of a hypervirulent KPC-2-producing Pseudomonas aeruginosa ST235 in Brazil. J Glob Antimicrob Resist. 2018Mar;12:153–154. https://doi.org/10.1016/j.jgar.2018.01.014Search in Google Scholar
del Barrio-Tofiño E, López-Causapé C, Oliver A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int J Antimicrob Agents. 2020 Dec;56(6):106196. https://doi.org/10.1016/j.ijantimi-cag.2020.106196del Barrio-TofiñoELópez-CausapéCOliverA.Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int J Antimicrob Agents. 2020Dec;56(6):106196. https://doi.org/10.1016/j.ijantimi-cag.2020.106196Search in Google Scholar
Dos Santos PAS, Silva MJA, Gouveia MIM, Lima LNGC, Quaresma AJPG, De Lima PDL, Brasiliense DM, Lima KVB, Rodrigues YC. ‘I he prevalence of metallo-beta-lactamese-(MβL)-producing Pseudomonas aeruginosa isolates in Brazil: A Systematic Review and Meta-Analysis. Microorganisms. 2023 Sep;11(9):2366. https://doi.org/10.3390/microorganisms11092366Dos SantosPASSilvaMJAGouveiaMIMLimaLNGCQuaresmaAJPGDe LimaPDLBrasilienseDMLimaKVBRodriguesYC.‘The prevalence of metallo-beta-lactamese-(MβL)-producing Pseudomonas aeruginosa isolates in Brazil: A Systematic Review and Meta-Analysis. Microorganisms. 2023Sep;11(9):2366. https://doi.org/10.3390/microorganisms11092366Search in Google Scholar
Escudero JA, Loot C, Nivina A, Mazel D. The Integron: Adaptation on demand. Microbiol Spectr. 2015;3(2):MDNA3-2014. https://doi.org/10.1128/microbiolspec.MDNA3-0019-2014EscuderoJALootCNivinaAMazelD.The Integron: Adaptation on demand. Microbiol Spectr. 2015;3(2):MDNA3–2014. https://doi.org/10.1128/microbiolspec.MDNA3-0019-2014Search in Google Scholar
Gadaime NK, Haddadin RN, Shehabi AA, Omran IN. Antimicrobial resistance and carbapenemase dissemination in Pseudomonas aeruginosa isolates from Libyan hospitals: A call for surveillance and intervention. Libyan J Med. 2024 Dec;19(1):2344320. https://doi.org/10.1080/19932820.2024.2344320GadaimeNKHaddadinRNShehabiAAOmranIN.Antimicrobial resistance and carbapenemase dissemination in Pseudomonas aeruginosa isolates from Libyan hospitals: A call for surveillance and intervention. Libyan J Med. 2024Dec;19(1):2344320. https://doi.org/10.1080/19932820.2024.2344320Search in Google Scholar
Girlich D, Naas T, Nordmann P. Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2004;48(6):2043–2048. https://doi.org/10.1128/aac.48.6.2043-2048.2004GirlichDNaasTNordmannP.Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2004;48(6):2043–2048. https://doi.org/10.1128/aac.48.6.2043-2048.2004Search in Google Scholar
Goli HR, Nahaei MR, Rezaee MA, Hasani A, Samadi Kafil H, Aghazadeh M, Sheikhalizadeh V. Contribution of mexAB-oprM and mexXY (-oprA) efflux operons in antibiotic resistance of clinical Pseudomonas aeruginosa isolates in Tabriz, Iran. Infect Genet Evol. 2016 Nov;45:75–82. https://doi.org/10.1016/j.meegid.2016.08.022GoliHRNahaeiMRRezaeeMAHasaniASamadi KafilHAghazadehMSheikhalizadehV.Contribution of mexAB-oprM and mexXY (-oprA) efflux operons in antibiotic resistance of clinical Pseudomonas aeruginosa isolates in Tabriz, Iran. Infect Genet Evol. 2016Nov;45:75–82. https://doi.org/10.1016/j.meegid.2016.08.022Search in Google Scholar
González-Bello C, Rodríguez D, Pernas M, Rodríguez Á, Colchón E. β-Lactamase inhibitors to restore the efficacy of antibiotics against superbugs. J Med Chem. 2020 Mar;63(5):1859–1881. https://doi.org/10.1021/acs.jmedchem.9b01279González-BelloCRodríguezDPernasMRodríguezÁColchónE.β-Lactamase inhibitors to restore the efficacy of antibiotics against superbugs. J Med Chem. 2020Mar;63(5):1859–1881. https://doi.org/10.1021/acs.jmedchem.9b01279Search in Google Scholar
Hall BG, Nisbet J. Building phylogenetic trees from genome sequences with kSNP4. Mol Biol Evol. 2023 Nov;40(11):msad235. https://doi.org/10.1093/molbev/msad235HallBGNisbetJ.Building phylogenetic trees from genome sequences with kSNP4. Mol Biol Evol. 2023Nov;40(11):msad235. https://doi.org/10.1093/molbev/msad235Search in Google Scholar
Horna G, López M, Guerra H, Saénz Y, Ruiz J. Interplay between MexAB-OprM and MexEF-OprN in clinical isolates of Pseudomonas aeruginosa. Sci Rep. 2018 Nov;8(1):16463. https://doi.org/10.1038/s41598-018-34694-zHornaGLópezMGuerraHSaénzYRuizJ.Interplay between MexAB-OprM and MexEF-OprN in clinical isolates of Pseudomonas aeruginosa. Sci Rep. 2018Nov;8(1):16463. https://doi.org/10.1038/s41598-018-34694-zSearch in Google Scholar
Ji J, Wang J, Zhou Z, Wang H, Jiang Y, Yu Y. Multilocus sequence typing reveals genetic diversity of carbapenem- or ceftazidime-non-susceptible Pseudomonas aeruginosa in China. Antimicrob Agents Chemother. 2013;57(11):5697–5700. https://doi.org/10.1128/aac.00970-13JiJWangJZhouZWangHJiangYYuY.Multilocus sequence typing reveals genetic diversity of carbapenem-or ceftazidime-non-susceptible Pseudomonas aeruginosa in China. Antimicrob Agents Chemother. 2013;57(11):5697–5700. https://doi.org/10.1128/aac.00970-13Search in Google Scholar
Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018 Sep;3:124. https://doi.org/10.12688/wellcomeopenres.14826.1JolleyKABrayJEMaidenMCJ.Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018Sep;3:124. https://doi.org/10.12688/wellcomeopenres.14826.1Search in Google Scholar
Kadri SS, Adjemian J, Lai YL, Spaulding AB, Ricotta E, Prevots DR, Palmore TN, Rhee C, Klompas M, Dekker JP, et al. Difficult-to-treat resistance in gram-negative bacteremia at 173 US hospitals: Retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis. 2018 Nov;67(12):1803–1814. https://doi.org/10.1093/cid/ciy378KadriSSAdjemianJLaiYLSpauldingABRicottaEPrevotsDRPalmoreTNRheeCKlompasMDekkerJPDifficult-to-treat resistance in gram-negative bacteremia at 173 US hospitals: Retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis. 2018Nov;67(12):1803–1814. https://doi.org/10.1093/cid/ciy378Search in Google Scholar
Karampatakis T, Zarras C, Pappa S, Vagdatli E, Iosifidis E, Roilides E, Papa A. Emergence of ST39 carbapenem-resistant Klebsiella pneumoniae producing VIM-1 and KPC-2. Microb Pathog. 2022 Jan;162:105373. https://doi.org/10.1016/j.micpath.2021.105373KarampatakisTZarrasCPappaSVagdatliEIosifidisERoilidesEPapaA.Emergence of ST39 carbapenem-resistant Klebsiella pneumoniae producing VIM-1 and KPC-2. Microb Pathog. 2022Jan;162:105373. https://doi.org/10.1016/j.micpath.2021.105373Search in Google Scholar
Ladunga I. Installing, maintaining, and using a local copy of BLAST for compute cluster or workstation use. Curr Protoc Bioinformatics. 2018;63(1):e54. https://doi.org/10.1002/cpbi.54LadungaI.Installing, maintaining, and using a local copy of BLAST for compute cluster or workstation use. Curr Protoc Bioinformatics. 2018;63(1):e54. https://doi.org/10.1002/cpbi.54Search in Google Scholar
Li J, Tang M, Liu Z, Wei Y, Xia F, Xia Y, Hu Y, Wang H, Zou M. Molecular characterization of extensively drug-resistant hypervirulent Pseudomonas aeruginosa isolates in China. Ann Clin Microbiol Antimicrob. 2024 Feb;23(1):13. https://doi.org/10.1186/s12941-024-00674-7LiJTangMLiuZWeiYXiaFXiaYHuYWangHZouM.Molecular characterization of extensively drug-resistant hypervirulent Pseudomonas aeruginosa isolates in China. Ann Clin Microbiol Antimicrob. 2024Feb;23(1):13. https://doi.org/10.1186/s12941-024-00674-7Search in Google Scholar
Li X, Zhang X, Cai H, Zhu Y, Ji J, Qu T, Tu Y, Zhou H, Yu Y. Over-expression of blaGES-1 due to a strong promoter in the class 1 integron contributes to decreased ceftazidime-avibactam susceptibility in carbapenem-resistant Pseudomonas aeruginosa ST235. Drug Resist Updat. 2023 Jul;69:100973. https://doi.org/10.1016/j.drup.2023.100973LiXZhangXCaiHZhuYJiJQuTTuYZhouHYuY.Over-expression of blaGES-1 due to a strong promoter in the class 1 integron contributes to decreased ceftazidime-avibactam susceptibility in carbapenem-resistant Pseudomonas aeruginosa ST235. Drug Resist Updat. 2023Jul;69:100973. https://doi.org/10.1016/j.drup.2023.100973Search in Google Scholar
Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582–610. https://doi.org/10.1128/cmr.00040-09ListerPDWolterDJHansonND.Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582–610. https://doi.org/10.1128/cmr.00040-09Search in Google Scholar
Liu Y, Zhu R, Liu X, Li D, Guo M, Fei B, Ren Y, You X, Li Y. Effect of piperine on the inhibitory potential of MexAB-OprM efflux pump and imipenem resistance in carbapenem-resistant Pseudomonas aeruginosa. Microb Pathog. 2023 Dec;185:106397. https://doi.org/10.1016/j.micpath.2023.106397LiuYZhuRLiuXLiDGuoMFeiBRenYYouXLiY.Effect of piperine on the inhibitory potential of MexAB-OprM efflux pump and imipenem resistance in carbapenem-resistant Pseudomonas aeruginosa. Microb Pathog. 2023Dec;185:106397. https://doi.org/10.1016/j.micpath.2023.106397Search in Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001 Dec;25(4):402–408. https://doi.org/10.1006/meth.2001.1262LivakKJSchmittgenTD.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001Dec;25(4):402–408. https://doi.org/10.1006/meth.2001.1262Search in Google Scholar
Lorusso AB, Carrara JA, Barroso CDN, Tuon FF, Faoro H. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int J Mol Sci. 2022;23(24):15779. https://doi.org/10.3390/ijms232415779LorussoABCarraraJABarrosoCDNTuonFFFaoroH.Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int J Mol Sci. 2022;23(24):15779. https://doi.org/10.3390/ijms232415779Search in Google Scholar
Ma W, Guo J, Deng C, Huang X, Sun Y, Xu L, Qin Q. Characterization of the chromosomally located metallo-β-Lactamase genes blaIMP-45 and blaVIM-2 in a carbapenem-resistant Pseudomonas aeruginosa clinical isolate. Microb Drug Resist. 2024 Oct;30(10):422–431. https://doi.org/10.1089/mdr.2024.0059MaWGuoJDengCHuangXSunYXuLQinQ.Characterization of the chromosomally located metallo-β-Lactamase genes blaIMP-45 and blaVIM-2 in a carbapenem-resistant Pseudomonas aeruginosa clinical isolate. Microb Drug Resist. 2024Oct;30(10):422–431. https://doi.org/10.1089/mdr.2024.0059Search in Google Scholar
Neves CS, Moura LCRV, Da Costa Lima JL, Maciel MAV. Clinical outcomes of intensive care unit patients infected with multidrug-resistant gram-negative bacteria treated with ceftazidime/avibactam and ceftolozane/tazobactam. Braz J Microbiol. 2024 Mar;55(1):333–341. https://doi.org/10.1007/s42770-023-01193-xNevesCSMouraLCRVDa Costa LimaJLMacielMAV.Clinical outcomes of intensive care unit patients infected with multidrug-resistant gram-negative bacteria treated with ceftazidime/avibactam and ceftolozane/tazobactam. Braz J Microbiol. 2024Mar;55(1):333–341. https://doi.org/10.1007/s42770-023-01193-xSearch in Google Scholar
Ocampo-Sosa AA, Cabot G, Rodríguez C, Roman E, Tubau F, Macia MD, Moya B, Zamorano L, Suárez C, Peña C, et al. Alterations of OprD in carbapenem-intermediate and -susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish multicenter study. Antimicrob Agents Chemother. 2012 Apr;56(4):1703–1713.https://doi.org/10.1128/aac.05451-11Ocampo-SosaAACabotGRodríguezCRomanETubauFMaciaMDMoyaBZamoranoLSuárezCPeñaCAlterations of OprD in carbapenem-intermediate and -susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish multicenter study. Antimicrob Agents Chemother. 2012Apr;56(4):1703–1713.https://doi.org/10.1128/aac.05451-11Search in Google Scholar
Oliver A, Rojo-Molinero E, Arca-Suarez J, Beşli Y, Bogaerts P, Cantón R, Cimen C, Croughs PD, Denis O, Giske CG, et al. Pseudomon asaeruginosa antimicrobial susceptibility profiles, resistance mechanisms and international clonal lineages: Update from ESGARS-ESCMID/ISARPAE Group. Clin Microbiol Infect. 2024;30(4):469–480. https://doi.org/10.1016/j.cmi.2023.12.026OliverARojo-MolineroEArca-SuarezJBeşliYBogaertsPCantónRCimenCCroughsPDDenisOGiskeCGPseudomon asaeruginosa antimicrobial susceptibility profiles, resistance mechanisms and international clonal lineages: Update from ESGARS-ESCMID/ISARPAE Group. Clin Microbiol Infect. 2024;30(4):469–480. https://doi.org/10.1016/j.cmi.2023.12.026Search in Google Scholar
Pan Y, Zhao M, Liu W, Jia W, Li G. Study on molecular epidemiology of carbapenem resistant Pseudomonas aeruginosa and related genes of quorum sensing signal system. Microb Pathog. 2024 Nov;196:106899. https://doi.org/10.1016/j.micpath.2024.106899PanYZhaoMLiuWJiaWLiG.Study on molecular epidemiology of carbapenem resistant Pseudomonas aeruginosa and related genes of quorum sensing signal system. Microb Pathog. 2024Nov;196:106899. https://doi.org/10.1016/j.micpath.2024.106899Search in Google Scholar
Porto A, Ayala J, Gutkind G, Di Conza J. A novel OXA-10-like beta-lactamase is present in different Enterobacteriaceae. Diagn Microbiol Infect Dis. 2010;66(2):228–229. https://doi.org/10.1016/j.diagmicrobio.2009.09.010PortoAAyalaJGutkindGDi ConzaJ.A novel OXA-10-like beta-lactamase is present in different Enterobacteriaceae. Diagn Microbiol Infect Dis. 2010;66(2):228–229. https://doi.org/10.1016/j.diagmicrobio.2009.09.010Search in Google Scholar
Protonotariou E, Meletis G, Vlachodimou N, Malousi A, Tychala A, Katsanou C, Daviti A, Mantzana P, Skoura L. Rapid reversal of carbapenemase-producing Pseudomonas aeruginosa epidemiology from blaVIM-to blaNDM-harbouring isolates in a Greek tertiary care hospital. Antibiotics. 2024;13(8):762. https://doi.org/10.3390/antibi-otics13080762ProtonotariouEMeletisGVlachodimouNMalousiATychalaAKatsanouCDavitiAMantzanaPSkouraL.Rapid reversal of carbapenemase-producing Pseudomonas aeruginosa epidemiology from blaVIM-to blaNDM-harbouring isolates in a Greek tertiary care hospital. Antibiotics. 2024;13(8):762. https://doi.org/10.3390/antibi-otics13080762Search in Google Scholar
Queenan AM, Bush K. Carbapenemases: ‘The versatile beta-lactamases. Clin Microbiol Rev. 2007;20(3):440–458. https://doi.org/10.1128/cmr.00001-07QueenanAMBushK.Carbapenemases: ‘I he versatile beta-lactamases. Clin Microbiol Rev. 2007;20(3):440–458. https://doi.org/10.1128/cmr.00001-07Search in Google Scholar
Rossi Gonçalves I, Dantas RCC, Ferreira ML, Batistão DWDF, Gontijo-Filho PP, Ribas RM. Carbapenem-resistant Pseudomonas aeruginosa: Association with virulence genes and biofilm formation. Braz J Microbiol. 2017;48(2):211–217. https://doi.org/10.1016/j.bjm.2016.11.004Rossi GonçalvesIDantasRCCFerreiraMLBatistãoDWDFGontijo-FilhoPPRibasRM.Carbapenem-resistant Pseudomonas aeruginosa: Association with virulence genes and biofilm formation. Braz J Microbiol. 2017;48(2):211–217. https://doi.org/10.1016/j.bjm.2016.11.004Search in Google Scholar
Roy Chowdhury P, Scott M, Worden P, Huntington P, Hudson B, Karagiannis T, Charles IG, Djordjevic SP. Genomic islands 1 and 2 play key roles in the evolution of extensively drug-resistant ST235 isolates of Pseudomonas aeruginosa. Open Biol. 2016 Mar;6(3):150175. https://doi.org/10.1098/rsob.150175Roy ChowdhuryPScottMWordenPHuntingtonPHudsonBKaragiannisTCharlesIGDjordjevicSP.Genomic islands 1 and 2 play key roles in the evolution of extensively drug-resistant ST235 isolates of Pseudomonas aeruginosa. Open Biol. 2016Mar;6(3):150175. https://doi.org/10.1098/rsob.150175Search in Google Scholar
Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016;2016:2475067. https://doi.org/10.1155/2016/2475067SantajitSIndrawattanaN.Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016;2016:2475067. https://doi.org/10.1155/2016/2475067Search in Google Scholar
Sendra E, Fernández-Muñoz A, Zamorano L, Oliver A, Horcajada JP, Juan C, Gómez-Zorrilla S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: A microbiological and clinical perspective. Infection. 2024 Aug;52(4):1235–1268. https://doi.org/10.1007/s15010-024-02313-xSendraEFernández-MuñozAZamoranoLOliverAHorcajadaJPJuanCGómez-ZorrillaS.Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: A microbiological and clinical perspective. Infection. 2024Aug;52(4):1235–1268. https://doi.org/10.1007/s15010-024-02313-xSearch in Google Scholar
Seupt A, Schniederjans M, Tomasch J, Häussler S. Expression of the MexXY aminoglycoside efflux pump and presence of an aminoglycoside-modifying enzyme in clinical Pseudomonas aeruginosa isolates are highly correlated. Antimicrob Agents Chemother. 2020;65(1):e01166–20. https://doi.org/10.1128/aac.01166-20SeuptASchniederjansMTomaschJHäusslerS. Expression of the MexXY aminoglycoside efflux pump and presence of an aminoglycoside-modifying enzyme in clinical Pseudomonas aeruginosa isolates are highly correlated. Antimicrob Agents Chemother. 2020;65(1):e01166–20. https://doi.org/10.1128/aac.01166-20Search in Google Scholar
Sherrard LJ, Wee BA, Duplancic C, Ramsay KA, Dave KA, Ballard E, Wainwright CE, Grimwood K, Sidjabat HE, Whiley DM, et al. Emergence and impact of oprD mutations in Pseudomonas aeruginosa strains in cystic fibrosis. J Cyst Fibros. 2022 Jan;21(1):e35–e43. https://doi.org/10.1016/j.jcf.2021.03.007SherrardLJWeeBADuplancicCRamsayKADaveKABallardEWainwrightCEGrimwoodKSidjabatHEWhileyDMEmergence and impact of oprD mutations in Pseudomonas aeruginosa strains in cystic fibrosis. J Cyst Fibros. 2022Jan;21(1):e35–e43. https://doi.org/10.1016/j.jcf.2021.03.007Search in Google Scholar
Silveira MC, Albano RM, Rocha-de-Souza CM, Leão RS, Marques EA, Picão RC, Kraychete GB, de Oliveira Santos IC, Oliveira TRTE, Tavares-Teixeira CB, et al. Description of a novel IncP plasmid harboring blaKPC-2 recovered from a SPM-1-producing Pseudomonas aeruginosa from ST277. Infect Genet Evol. 2022 Aug;102:105302. https://doi.org/10.1016/j.meegid.2022.105302SilveiraMCAlbanoRMRocha-de-SouzaCMLeãoRSMarquesEAPicãoRCKraycheteGBde Oliveira SantosICOliveiraTRTETavares-TeixeiraCBDescription of a novel IncP plasmid harboring blaKPC-2 recovered from a SPM-1-producing Pseudomonas aeruginosa from ST277. Infect Genet Evol. 2022Aug;102:105302. https://doi.org/10.1016/j.meegid.2022.105302Search in Google Scholar
Sun Z, Yang F, Ji J, Cao W, Liu C, Ding B, Xu X. Dissecting the genotypic features of a fluoroquinolone-resistant Pseudomonas aeruginosa ST316 sublineage causing ear infections in Shanghai, China. Microb Genom. 2023;9(4):mgen000989. https://doi.org/10.1099/mgen.0.000989SunZYangFJiJCaoWLiuCDingBXuX.Dissecting the genotypic features of a fluoroquinolone-resistant Pseudomonas aeruginosa ST316 sublineage causing ear infections in Shanghai, China. Microb Genom. 2023;9(4):mgen000989. https://doi.org/10.1099/mgen.0.000989Search in Google Scholar
Tomás M, Doumith M, Warner M, Turton JF, Beceiro A, Bou G, Livermore DM, Woodford N. Efflux pumps, OprD porin, AmpC beta-lactamase, and multiresistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother. 2010 May;54(5):2219–2224. https://doi.org/10.1128/aac.00816-09TomásMDoumithMWarnerMTurtonJFBeceiroABouGLivermoreDMWoodfordN.Efflux pumps, OprD porin, AmpC beta-lactamase, and multiresistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother. 2010May;54(5):2219–2224. https://doi.org/10.1128/aac.00816-09Search in Google Scholar
Tran HA, Vu TNB, Trinh ST, Tran DL, Pham HM, Ngo THH, Nguyen MT, Tran ND, Pham DT, Dang DA, et al. Resistance mechanisms and genetic relatedness among carbapenem-resistant Pseudomonas aeruginosa isolates from three major hospitals in Hanoi, Vietnam (2011–15). JAC Antimicrob Resist. 2021 Jul;3(3):dlab103. https://doi.org/10.1093/jacamr/dlab103TranHAVuTNBTrinhSTTranDLPhamHMNgoTHHNguyenMTTranNDPhamDTDangDAResistance mechanisms and genetic relatedness among carbapenem-resistant Pseudomonas aeruginosa isolates from three major hospitals in Hanoi, Vietnam (2011–15). JAC Antimicrob Resist. 2021Jul;3(3):dlab103. https://doi.org/10.1093/jacamr/dlab103Search in Google Scholar
Verdial C, Serrano I, Tavares L, Gil S, Oliveira M. Mechanisms of antibiotic and biocide resistance that contribute to Pseudomonas aeruginosa persistence in the hospital environment. Biomedicines. 2023 Apr;11(4):1221. https://doi.org/10.3390/biomedi-cines11041221VerdialCSerranoITavaresLGilSOliveiraM.Mechanisms of antibiotic and biocide resistance that contribute to Pseudomonas aeruginosa persistence in the hospital environment. Biomedicines. 2023Apr;11(4):1221. https://doi.org/10.3390/biomedi-cines11041221Search in Google Scholar
Wang L, Zhou X, Lu Y, Zhang X, Jiang J, Sun Z, Yin M, Doi Y, Wang M, Guo Q, et al. Levofloxacin-induced MexS mutation triggers imipenem-relebactam resistance in a KPC-producing Pseudomonas aeruginosa. Int J Antimicrob Agents. 2024;63(5):107119. https://doi.org/10.1016/j.ijantimicag.2024.107119WangLZhouXLuYZhangXJiangJSunZYinMDoiYWangMGuoQLevofloxacin-induced MexS mutation triggers imipenem-relebactam resistance in a KPC-producing Pseudomonas aeruginosa. Int J Antimicrob Agents. 2024;63(5):107119. https://doi.org/10.1016/j.ijantimicag.2024.107119Search in Google Scholar
Wang X, Kong N, Cao M, Zhang L, Sun M, Xiao L, Li G, Wei Q. Comparison of class 2 integron integrase activities. Curr Microbiol. 2021 Mar;78(3):967–978. https://doi.org/10.1007/s00284-021-02352-9WangXKongNCaoMZhangLSunMXiaoLLiGWeiQ.Comparison of class 2 integron integrase activities. Curr Microbiol. 2021Mar;78(3):967–978. https://doi.org/10.1007/s00284-021-02352-9Search in Google Scholar
Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017 Jun;13(6):e1005595. https://doi.org/10.1371/journal.pcbi.1005595WickRRJuddLMGorrieCLHoltKE.Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017Jun;13(6):e1005595. https://doi.org/10.1371/journal.pcbi.1005595Search in Google Scholar
Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics. 2015;31(20):3350–3352. https://doi.org/10.1093/bioinformatics/btv383WickRRSchultzMBZobelJHoltKE.Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics. 2015;31(20):3350–3352. https://doi.org/10.1093/bioinformatics/btv383Search in Google Scholar
Xiu Y, Dai Y, Yin S, Wei Q. Analysis of the class 1 integrons, carbapenemase genes and biofilm formation genes occurrence in Acinetobacter baumannii clinical Isolates. Pol J Microbiol. 2024 May;73(2):189–197. https://doi.org/10.33073/pjm-2024-017XiuYDaiYYinSWeiQ. Analysis of the class 1 integrons, carbapenemase genes and biofilm formation genes occurrence in Acinetobacter baumannii clinical Isolates. Pol J Microbiol. 2024May;73(2):189–197. https://doi.org/10.33073/pjm-2024-017Search in Google Scholar
Zahedi Bialvaei A, Rahbar M, Hamidi-Farahani R, Asgari A, Esmailkhani A, Mardani Dashti Y, Soleiman-Meigooni S. Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains. Microb Pathog. 2021;153:104789. https://doi.org/10.1016/j.micpath.2021.104789Zahedi BialvaeiARahbarMHamidi-FarahaniRAsgariAEsmailkhaniAMardani DashtiYSoleiman-MeigooniS.Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains. Microb Pathog. 2021;153:104789. https://doi.org/10.1016/j.micpath.2021.104789Search in Google Scholar
Zhang P, Hu J, Wu W, Shi W, Jiang Y, Yu Y, Zheng X, Qu T. Evolutionary adaptation of KPC-2-producing Pseudomonas aeruginosa high-risk sequence type 463 in a lung transplant patient. Int J Antimicrob Agents. 2024 Sep;64(3):107279. https://doi.org/10.1016/j.ijantimicag.2024.107279ZhangPHuJWuWShiWJiangYYuYZhengXQuT.Evolutionary adaptation of KPC-2-producing Pseudomonas aeruginosa high-risk sequence type 463 in a lung transplant patient. Int J Antimicrob Agents. 2024Sep;64(3):107279. https://doi.org/10.1016/j.ijantimicag.2024.107279Search in Google Scholar
Zhang X, Wang L, Li D, Li P, Yuan L, Yang F, Guo Q, Wang M. An IncP-2 plasmid sublineage associated with dissemination of blaIMP-45 among carbapenem-resistant Pseudomonas aeruginosa. Emerg Microbes Infect. 2021;10(1):442–449. https://doi.org/10.1080/22221751.2021.1894903ZhangXWangLLiDLiPYuanLYangFGuoQWangM.An IncP-2 plasmid sublineage associated with dissemination of blaIMP-45 among carbapenem-resistant Pseudomonas aeruginosa. Emerg Microbes Infect. 2021;10(1):442–449. https://doi.org/10.1080/22221751.2021.1894903Search in Google Scholar
Zhao X, Qin J, Chen G, Yang C, Wei J, Li W, Jia W. Whole-genome sequencing, multilocus sequence typing, and resistance mechanism of the carbapenem-resistant Pseudomonas aeruginosa in China. Microb Pathog. 2024 Jul;192:106720. https://doi.org/10.1016/j.mic-path.2024.106720ZhaoXQinJChenGYangCWeiJLiWJiaW.Whole-genome sequencing, multilocus sequence typing, and resistance mechanism of the carbapenem-resistant Pseudomonas aeruginosa in China. Microb Pathog. 2024Jul;192:106720. https://doi.org/10.1016/j.mic-path.2024.106720Search in Google Scholar
Zhu Y, Wang T, Zhu W, Wei Q. Influence of class 2 integron integrase concentration on gene cassette insertion and excision in vivo. Braz J Microbiol. 2023 Jun;54(2):645–653. https://doi.org/10.1007/s42770-023-00926-2ZhuYWangTZhuWWeiQ.Influence of class 2 integron integrase concentration on gene cassette insertion and excision in vivo. Braz J Microbiol. 2023Jun;54(2):645–653. https://doi.org/10.1007/s42770-023-00926-2Search in Google Scholar