This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Afraz V, Younesi H, Bolandi M, Hadiani MR. Optimization of lead and cadmium biosorption by Lactobacillus acidophilus using response surface methodology. Biocatal Agric Biotechnol. 2020 Oct; 29:101828. https://doi.org/10.1016/j.bcab.2020.101828AfrazVYounesiHBolandiMHadianiMR.Optimization of lead and cadmium biosorption by Lactobacillus acidophilus using response surface methodology. Biocatal Agric Biotechnol. 2020Oct; 29:101828. https://doi.org/10.1016/j.bcab.2020.101828Search in Google Scholar
Awasthi MK, Pandey AK, Bundela PS, Wong JWC, Li R, Zhang Z. Co-composting of gelatin industry sludge combined with organic fraction of municipal solid waste and poultry waste employing zeolite mixed with enriched nitrifying bacterial consortium. Bioresour Technol. 2016 Aug;213:181–189. https://doi.org/10.1016/j.biortech.2016.02.026AwasthiMKPandeyAKBundelaPSWongJWCLiRZhangZ.Co-composting of gelatin industry sludge combined with organic fraction of municipal solid waste and poultry waste employing zeolite mixed with enriched nitrifying bacterial consortium. Bioresour Technol. 2016Aug;213:181–189. https://doi.org/10.1016/j.biortech.2016.02.026Search in Google Scholar
Banerjee S, Kamila B, Barman S, Joshi SR, Mandal T, Halder G. Interlining Cr(VI) remediation mechanism by a novel bacterium Pseudomonas brenneri isolated from coalmine wastewater. J Environ Manage. 2019 Mar;233:271–282. https://doi.org/10.1016/j.jenvman.2018.12.048BanerjeeSKamilaBBarmanSJoshiSRMandalTHalderG.Interlining Cr(VI) remediation mechanism by a novel bacterium Pseudomonas brenneri isolated from coalmine wastewater. J Environ Manage. 2019Mar;233:271–282. https://doi.org/10.1016/j.jenvman.2018.12.048Search in Google Scholar
Bhateria R, Dhaka R. Optimization and statistical modelling of cadmium biosorption process in aqueous medium by Aspergillus niger using response surface methodology and principal component analysis. Ecol Eng. 2019 Sep;135:127–138. https://doi.org/10.1016/j.ecoleng.2019.05.010BhateriaRDhakaR.Optimization and statistical modelling of cadmium biosorption process in aqueous medium by Aspergillus niger using response surface methodology and principal component analysis. Ecol Eng. 2019Sep;135:127–138. https://doi.org/10.1016/j.ecoleng.2019.05.010Search in Google Scholar
Bian Z, Dong W, Li X, Song Y, Huang H, Hong K, Hu K. Enrichment of Terbium(III) under synergistic effect of biosorption and biomineralization by Bacillus sp. DW015 and Sporosarcina pasteurii. Microbiol Spectr. 2024 Aug;12(8):e0076024. https://doi.org/10.1128/spectrum.00760-24BianZDongWLiXSongYHuangHHongKHuK.Enrichment of Terbium(III) under synergistic effect of biosorption and biomineralization by Bacillus sp. DW015 and Sporosarcina pasteurii. Microbiol Spectr. 2024Aug;12(8):e0076024. https://doi.org/10.1128/spectrum.00760-24Search in Google Scholar
Chakravarty R, Banerjee PC. Mechanism of cadmium binding on the cell wall of an acidophilic bacterium. Bioresour Technol. 2012 Mar;108:176–183. https://doi.Org/10.1016/j.biortech.2011.12.100ChakravartyRBanerjeePC.Mechanism of cadmium binding on the cell wall of an acidophilic bacterium. Bioresour Technol. 2012Mar;108:176–183. https://doi.Org/10.1016/j.biortech.2011.12.100Search in Google Scholar
Chaudhary P, Beniwal V, Umar A, Kumar R, Sharma P, Kumar A, Al-Hadeethi Y, Chhokar V. In vitro microcosm of co-cultured bacteria for the removal of hexavalent Cr and tannic acid: A mechanistic approach to study the impact of operational parameters. Ecotoxicol Environ Saf. 2021 Jan;208:111484. https://doi.org/10.1016/j.ecoenv.2020.111484ChaudharyPBeniwalVUmarAKumarRSharmaPKumarAAl-HadeethiYChhokarV.In vitro microcosm of co-cultured bacteria for the removal of hexavalent Cr and tannic acid: A mechanistic approach to study the impact of operational parameters. Ecotoxicol Environ Saf. 2021Jan;208:111484. https://doi.org/10.1016/j.ecoenv.2020.111484Search in Google Scholar
Chi Y, Wang R, Zhang X, Ma X, Qin T, Zhang D, Chu S, Zhao T, Zhou P, Zhang D. Identification of cadmium-tolerant plant growthpromoting rhizobacteria and characterization of its Cd-biosorption and strengthening effect on phytoremediation: Development of a new amphibious-biocleaner for Cd-contaminated site. J Environ Manage. 2024 Dec;371:123225. https://doi.org/10.1016/j.jenvman.2024.123225ChiYWangRZhangXMaXQinTZhangDChuSZhaoTZhouPZhangD.Identification of cadmium-tolerant plant growthpromoting rhizobacteria and characterization of its Cd-biosorption and strengthening effect on phytoremediation: Development of a new amphibious-biocleaner for Cd-contaminated site. J Environ Manage. 2024Dec;371:123225. https://doi.org/10.1016/j.jenvman.2024.123225Search in Google Scholar
Choińska-Pulit A, Sobolczyk-Bednarek J, Łaba W. Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken design. Ecotoxicol Environ Saf. 2018 Mar;149:275–283. https://doi.org/10.1016/j.ecoenv.2017.12.008Choińska-PulitASobolczyk-BednarekJŁabaW.Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken design. Ecotoxicol Environ Saf. 2018Mar;149:275–283. https://doi.org/10.1016/j.ecoenv.2017.12.008Search in Google Scholar
Das S, Mishra J, Das SK, Pandey S, Rao DS, Chakraborty A, Sudarshan M, Das N, Thatoi H. Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere. 2014 Feb;96:112–121. https://doi.org/10.1016/j.chemosphere.2013.08.080DasSMishraJDasSKPandeySRaoDSChakrabortyASudarshanMDasNThatoiH.Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere. 2014Feb;96:112–121. https://doi.org/10.1016/j.chemosphere.2013.08.080Search in Google Scholar
Deng G, Nagy C, Yu P. Combined molecular spectroscopic techniques (SR-FTIR, XRF, ATR-FTIR) to study physiochemical and nutrient profiles of Avena sativa grain and nutrition and structure interactive association properties. Crit Rev Food Sci Nutr. 2023; 63(25):7225–7237. https://doi.org/10.1080/10408398.2022.2045470DengGNagyCYuP.Combined molecular spectroscopic techniques (SR-FTIR, XRF, ATR-FTIR) to study physiochemical and nutrient profiles of Avena sativa grain and nutrition and structure interactive association properties. Crit Rev Food Sci Nutr. 2023; 63(25):7225–7237. https://doi.org/10.1080/10408398.2022.2045470Search in Google Scholar
Ding E, Jiang J, Lan Y, Zhang L, Gao C, Jiang K, Qi X, Fan X. Optimizing Cd2+ adsorption performance of KOH modified biochar adopting response surface methodology. J Anal Appl Pyrolysis. 2023Jan;169:105788. https://doi.org/10.1016/j.jaap.2022.105788DingEJiangJLanYZhangLGaoCJiangKQiXFanX.Optimizing Cd2+ adsorption performance of KOH modified biochar adopting response surface methodology. J Anal Appl Pyrolysis. 2023Jan;169:105788. https://doi.org/10.1016/j.jaap.2022.105788Search in Google Scholar
Dixit R, Wasiullah, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, et al. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability. 2015 Feb;7(2):2189–2212. https://doi.org/10.3390/su7022189DixitRWasiullahMalaviyaDPandiyanKSinghUBSahuAShuklaRSinghBPRaiJPSharmaPKBioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability. 2015Feb;7(2):2189–2212. https://doi.org/10.3390/su7022189Search in Google Scholar
Elsayed AE, Attia SK, Mahmoud GA, Mostafa YM, Taman AR, Osman DI. Environmentally friendly radiation EDTA modified hydrogel based on gelatin for adsorptive removal of cationic and anionic dye from synthetic wastewater. Egypt J Pet. 2023 Dec;32(4):30–35. https://doi.org/10.1016/j.ejpe.2023.10.002ElsayedAEAttiaSKMahmoudGAMostafaYMTamanAROsmanDI.Environmentally friendly radiation EDTA modified hydrogel based on gelatin for adsorptive removal of cationic and anionic dye from synthetic wastewater. Egypt J Pet. 2023Dec;32(4):30–35. https://doi.org/10.1016/j.ejpe.2023.10.002Search in Google Scholar
Garg SK, Tripathi M, Lal N. Response surface methodology for optimization of process variable for reactive orange 4 dye discoloration by Pseudomonas putida SKG-1 strain and bioreactor trial for its possible use in large-scale bioremediation. Desalin Water Treat. 2014 Jun;54(11):3122–3133. https://doi.org/10.1080/19443994.2014.905975GargSKTripathiMLalN.Response surface methodology for optimization of process variable for reactive orange 4 dye discoloration by Pseudomonas putida SKG-1 strain and bioreactor trial for its possible use in large-scale bioremediation. Desalin Water Treat. 2014Jun;54(11):3122–3133. https://doi.org/10.1080/19443994.2014.905975Search in Google Scholar
Gupta S, Sharma SK, Kumar A. Biosorption of Ni(II) ions from aqueous solution using modified Aloe barbadensis Miller leaf powder. Water Sci Eng. 2019 Mar;12(1):27–36. https://doi.org/10.1016/j.wse.2019.04.003GuptaSSharmaSKKumarA.Biosorption of Ni(II) ions from aqueous solution using modified Aloe barbadensis Miller leaf powder. Water Sci Eng. 2019Mar;12(1):27–36. https://doi.org/10.1016/j.wse.2019.04.003Search in Google Scholar
Hadiani MR, Darani KK, Rahimifard N, Younesi H. Biosorption of low concentration levels of Lead (II) and Cadmium (II) from aqueous solution by Saccharomyces cerevisiae: Response surface methodology. Biocatal Agric Biotechnol. 2018 Jul;15:25–34. https://doi.org/10.1016/j.bcab.2018.05.001HadianiMRDaraniKKRahimifardNYounesiH.Biosorption of low concentration levels of Lead (II) and Cadmium (II) from aqueous solution by Saccharomyces cerevisiae: Response surface methodology. Biocatal Agric Biotechnol. 2018Jul;15:25–34. https://doi.org/10.1016/j.bcab.2018.05.001Search in Google Scholar
Hansda A, Kumar V, Anshumali. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World J Microbiol Biotechnol. 2016 Oct;32(10):170. https://doi.org/10.1007/s11274-016-2117-1HansdaAKumarVAnshumaliA comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World J Microbiol Biotechnol. 2016Oct;32(10):170. https://doi.org/10.1007/s11274-016-2117-1Search in Google Scholar
He M, Xu Y, Qiao Y, Zhang Z, Liang J, Peng Y, Liao J, Qiao Y, Shang C, Guo Z, et al. A novel yeast strain Geotrichum sp. CS-67 capable of accumulating heavy metal ions. Ecotoxicol Environ Saf. 2022 May;236:113497. https://doi.org/10.1016/j.ecoenv.2022.113497HeMXuYQiaoYZhangZLiangJPengYLiaoJQiaoYShangCGuoZA novel yeast strain Geotrichum sp. CS-67 capable of accumulating heavy metal ions. Ecotoxicol Environ Saf. 2022May;236:113497. https://doi.org/10.1016/j.ecoenv.2022.113497Search in Google Scholar
Huang Y, Li M, Yang Y, Zeng Q, Loganathan P, Hu L, Zhong H, He Z. Sulfobacillus thermosulfidooxidans: An acidophile isolated from acid hot spring for the biosorption of heavy metal ions. Int. J. Environ. Sci. Technol. 2020 May;17:2655–2666. https://doi.org/10.1007/s13762-020-02669-1HuangYLiMYangYZengQLoganathanPHuLZhongHHeZ.Sulfobacillus thermosulfidooxidans: An acidophile isolated from acid hot spring for the biosorption of heavy metal ions. Int. J. Environ. Sci. Technol. 2020May;17:2655–2666. https://doi.org/10.1007/s13762-020-02669-1Search in Google Scholar
Imron MF, Setiawan W, Putranto TWC, Abdullah SRS, Kurniawan SB. Biosorption of chromium by live and dead cells of Bacillus nitratireducens isolated from textile effluent. Chemosphere. 2024 Jul; 359:142389. https://doi.org/10.1016/j.chemosphere.2024.142389ImronMFSetiawanWPutrantoTWCAbdullahSRSKurniawanSB.Biosorption of chromium by live and dead cells of Bacillus nitratireducens isolated from textile effluent. Chemosphere. 2024Jul; 359:142389. https://doi.org/10.1016/j.chemosphere.2024.142389Search in Google Scholar
Isik B, Ugraskan V, Cankurtaran O. Effective biosorption of methylene blue dye from aqueous solution using wild macrofungus (Lactariuspiperatus). Sep Sci Technol. 2021 Jul;57(6):854–871. https://doi.org/10.1080/01496395.2021.1956540IsikBUgraskanVCankurtaranO.Effective biosorption of methylene blue dye from aqueous solution using wild macrofungus (Lactariuspiperatus)
. Sep Sci Technol. 2021Jul;57(6):854–871. https://doi.org/10.1080/01496395.2021.1956540Search in Google Scholar
Jiang C, Yue F, Li C, Zhou S, Zheng L. Polyethyleneimine-modified lobster shell biochar for the efficient removal of copper ions in aqueous solution: Response surface method optimization and adsorption mechanism. J Environ Chem Eng. 2022 Dec;10(6):108996. https://doi.org/10.1016/j.jece.2022.108996JiangCYueFLiCZhouSZhengL.Polyethyleneimine-modified lobster shell biochar for the efficient removal of copper ions in aqueous solution: Response surface method optimization and adsorption mechanism. J Environ Chem Eng. 2022Dec;10(6):108996. https://doi.org/10.1016/j.jece.2022.108996Search in Google Scholar
Jiao Z, Gao C, Li J, Lu J, Wang J, Li L, Chen X. Weathered coalimmobilized microbial materials as a highly efficient adsorbent for the removal of lead. Molecules. 2024 Jan;29(3):660. https://doi.org/10.3390/molecules29030660JiaoZGaoCLiJLuJWangJLiLChenX.Weathered coalimmobilized microbial materials as a highly efficient adsorbent for the removal of lead. Molecules. 2024Jan;29(3):660. https://doi.org/10.3390/molecules29030660Search in Google Scholar
Kamani H, Safari GH, Asgari G, Ashrafi SD. Data on modeling of enzymatic elimination of Direct Red 81 using Response Surface Methodology. Data Brief. 2018 Mar;18:80–86. https://doi.org/10.1016/j.dib.2018.03.012KamaniHSafariGHAsgariGAshrafiSD.Data on modeling of enzymatic elimination of Direct Red 81 using Response Surface Methodology. Data Brief. 2018Mar;18:80–86. https://doi.org/10.1016/j.dib.2018.03.012Search in Google Scholar
Karnwal A. Unveiling the promise of biosorption for heavy metal removal from water sources. Desalin Water Treat. 2024 Jul; 319: 100523. https://doi.org/10.1016/j.dwt.2024.100523KarnwalA.Unveiling the promise of biosorption for heavy metal removal from water sources. Desalin Water Treat. 2024Jul; 319: 100523. https://doi.org/10.1016/j.dwt.2024.100523Search in Google Scholar
Kazy SK, D’Souza SF, Sar P. Uranium and thorium sequestration by a Pseudomonas sp.: Mechanism and chemical characterization. J Hazard Mater. 2009 Apr;163(1):65–72. https://doi.org/10.1016/j.jhazmat.2008.06.076KazySKD’SouzaSFSarP.Uranium and thorium sequestration by a Pseudomonas sp.: Mechanism and chemical characterization. J Hazard Mater. 2009Apr;163(1):65–72. https://doi.org/10.1016/j.jhazmat.2008.06.076Search in Google Scholar
Kuhlmann AU, Hoffmann T, Bursy J, Jebbar M, Bremer E. Ectoine and hydroxyectoine as protectants against osmotic and cold stress: Uptake through the SigB-controlled betaine-choline-carnitine transporter-type carrier EctT from Virgibacillus pantothenticus. J Bacteriol. 2011 Sep;193(18):4699–4708. https://doi.org/10.1128/jb.05270-11KuhlmannAUHoffmannTBursyJJebbarMBremerE.Ectoine and hydroxyectoine as protectants against osmotic and cold stress: Uptake through the SigB-controlled betaine-choline-carnitine transporter-type carrier EctT from Virgibacillus pantothenticus. J Bacteriol. 2011Sep;193(18):4699–4708. https://doi.org/10.1128/jb.05270-11Search in Google Scholar
Kumar U, Singh RS, Mandal J, Nayak AK, Jha AK. Removal of As(III) and Cr(VI) from aqueous solutions by Bixa orellana leaf biosorbent and As(III) removal using bacterial isolates from heavy metal contaminated site. J Indian Chem Soc. 2022 May;99(5):100334. https://doi.org/10.1016/j.jics.2021.100334KumarUSinghRSMandalJNayakAKJhaAK.Removal of As(III) and Cr(VI) from aqueous solutions by Bixa orellana leaf biosorbent and As(III) removal using bacterial isolates from heavy metal contaminated site. J Indian Chem Soc. 2022May;99(5):100334. https://doi.org/10.1016/j.jics.2021.100334Search in Google Scholar
Li D, Zhao H, Li G, Yan H, Han Z, Chi X, Meng L, Wang J, Xu Y, Tucker ME. Calcium ion biorecovery from industrial wastewater by Bacillus amyloliquefaciens DMS6. Chemosphere. 2022 Jul;298: 134328. https://doi.org/10.1016/j.chemosphere.2022.134328LiDZhaoHLiGYanHHanZChiXMengLWangJXuYTuckerME.Calcium ion biorecovery from industrial wastewater by Bacillus amyloliquefaciens DMS6. Chemosphere. 2022Jul;298: 134328. https://doi.org/10.1016/j.chemosphere.2022.134328Search in Google Scholar
Li X, Li D, Yan Z, Ao Y. Biosorption and bioaccumulation characteristics of cadmium by plant growth-promoting rhizobacteria. RSC Adv. 2018 Sep;8(54):30902–30911. https://doi.org/10.1039/c8ra06270fLiXLiDYanZAoY.Biosorption and bioaccumulation characteristics of cadmium by plant growth-promoting rhizobacteria. RSC Adv. 2018Sep;8(54):30902–30911. https://doi.org/10.1039/c8ra06270fSearch in Google Scholar
Liu G, Geng W, Wu Y, Zhang Y, Chen H, Li M, Cao Y. Biosorption of lead ion by lactic acid bacteria and the application in wastewater. Arch Microbiol. 2023a Dec;206(1):18. https://doi.org/10.1007/s00203-023-03755-xLiuGGengWWuYZhangYChenHLiMCaoY.Biosorption of lead ion by lactic acid bacteria and the application in wastewater. Arch Microbiol. 2023aDec;206(1):18. https://doi.org/10.1007/s00203-023-03755-xSearch in Google Scholar
Liu J, Hu J, Zhong J, Luo J, Zhao A, Liu F, Hong R, Qian G, Xu ZP. The effect of calcium on the treatment of fresh leachate in an expanded granular sludge bed bioreactor. Bioresour Technol. 2011 May;102(9):5466–5472. https://doi.org/10.1016/j.biortech.2010.11.056LiuJHuJZhongJLuoJZhaoALiuFHongRQianGXuZP.The effect of calcium on the treatment of fresh leachate in an expanded granular sludge bed bioreactor. Bioresour Technol. 2011May;102(9):5466–5472. https://doi.org/10.1016/j.biortech.2010.11.056Search in Google Scholar
Liu Y, Li W, Sun X, Li S, Wang C, Zhang,R. Adsorption of lead ions by green waste compost and its mechanism. J Soils Sediments. 2023b;23(1):299–311. https://doi.org/10.1007/s11368-022-03307-8LiuYLiWSunXLiSWangCZhangR.Adsorption of lead ions by green waste compost and its mechanism. J Soils Sediments. 2023b;23(1):299–311. https://doi.org/10.1007/s11368-022-03307-8Search in Google Scholar
Long J, Yuvaraja G, Zhou S, Mo J, Li H, Luo D, Chen DY, Kong L, Subbaiah MV, Reddy GM. Inactive Fusarium Fungal strains (ZSY and MJY) isolation and application for the removal of Pb(II) ions from aqueous environment. J Ind.Eng Chem. 2019 Apr;72:442–452. https://doi.org/10.1016/j.jiec.2018.12.047LongJYuvarajaGZhouSMoJLiHLuoDChenDYKongLSubbaiahMVReddyGM.Inactive Fusarium Fungal strains (ZSY and MJY) isolation and application for the removal of Pb(II) ions from aqueous environment. J Ind.Eng Chem. 2019Apr;72:442–452. https://doi.org/10.1016/j.jiec.2018.12.047Search in Google Scholar
Luong HQ, Le TN, Lee PH, Hsieh PC. Optimization of nonspecific protease activity fabrication by Bacillus subtilis N30 isolated from Taiwan using different models of response surface methodology. Biocatal Agric Biotechnol. 2023Jul;50:102686. https://doi.org/10.1016/j.bcab.2023.102686LuongHQLeTNLeePHHsiehPC.Optimization of nonspecific protease activity fabrication by Bacillus subtilis N30 isolated from Taiwan using different models of response surface methodology. Biocatal Agric Biotechnol. 2023Jul;50:102686. https://doi.org/10.1016/j.bcab.2023.102686Search in Google Scholar
Mathew BB, Krishnamurthy NB. Screening and identification of bacteria isolated from industrial area groundwater to study lead sorption: Kinetics and statistical optimization of biosorption parameters. Groundw Sustain Dev. 2018 Sep;7:313–327. https://doi.org/10.1016/j.gsd.2018.07.007MathewBBKrishnamurthyNB.Screening and identification of bacteria isolated from industrial area groundwater to study lead sorption: Kinetics and statistical optimization of biosorption parameters. Groundw Sustain Dev. 2018Sep;7:313–327. https://doi.org/10.1016/j.gsd.2018.07.007Search in Google Scholar
Mejias Carpio IE, Ansari A, Rodrigues DF. Relationship of biodiversity with heavy metal tolerance and sorption capacity: A metaanalysis approach. Environ Sci Technol. 2018 Jan;52(1):184–194. https://doi.org/10.1021/acs.est.7b04131Mejias CarpioIEAnsariARodriguesDF.Relationship of biodiversity with heavy metal tolerance and sorption capacity: A metaanalysis approach. Environ Sci Technol. 2018Jan;52(1):184–194. https://doi.org/10.1021/acs.est.7b04131Search in Google Scholar
Mekpan W, Cheirsilp B, Maneechote W, Srinuanpan S. Intensification and characterization of biosorption of microalgal cells on filamentous fungal pellets as effective tools for harvesting of microalgal biomass. Sep Purif Technol. 2025 Jun;358:130316. https://doi.org/10.1016/j.seppur.2024.130316MekpanWCheirsilpBManeechoteWSrinuanpanS.Intensification and characterization of biosorption of microalgal cells on filamentous fungal pellets as effective tools for harvesting of microalgal biomass. Sep Purif Technol. 2025Jun;358:130316. https://doi.org/10.1016/j.seppur.2024.130316Search in Google Scholar
Muñoz AJ, Espínola F, Ruiz E. Removal of Pb(II) in a packed-bed column by a Klebsiella sp. 3S1 biofilm supported on porous ceramic Raschig rings. J Ind Eng Chem. 2016 Aug;40:118–127. https://doi.org/10.1016/j.jiec.2016.06.012MuñozAJEspínolaFRuizE.Removal of Pb(II) in a packed-bed column by a Klebsiella sp. 3S1 biofilm supported on porous ceramic Raschig rings. J Ind Eng Chem. 2016Aug;40:118–127. https://doi.org/10.1016/j.jiec.2016.06.012Search in Google Scholar
Nagarajan K, Surumbarkuzhali N, Parimala K. Spectral analysis (FT-IR, FT-Raman, UV and NMR), molecular docking, ADMET properties and computational studies: 2-Hydroxy-5-nitrobenzaldehyde. J Indian Chem Soc. 2023 Mar;100(3):100927. https://doi.org/10.1016/j.jics.2023.100927NagarajanKSurumbarkuzhaliNParimalaK.Spectral analysis (FT-IR, FT-Raman, UV and NMR), molecular docking ADMET properties and computational studies: 2-Hydroxy-5-nitrobenzaldehyde. J Indian Chem Soc. 2023Mar;100(3):100927. https://doi.org/10.1016/j.jics.2023.100927Search in Google Scholar
Nagy B, Szilagyi B, Majdik C, Katona G, Indolean C, Măicăneanu A. Cd (II) and Zn (II) biosorption on Lactarius piperatus macrofungus: Equilibrium isotherm and kinetic studies. Environ Prog Sustainable Energy. 2014 Dec;33(4):1158–1170. https://doi.org/10.1002/ep.11897NagyBSzilagyiBMajdikCKatonaGIndoleanCMăicăneanuA.Cd (II) and Zn (II) biosorption on Lactarius piperatus macrofungus: Equilibrium isotherm and kinetic studies. Environ Prog Sustainable Energy. 2014Dec;33(4):1158–1170. https://doi.org/10.1002/ep.11897Search in Google Scholar
Nasrullah A, Khan H, Khan AS, Man Z, Muhammad N, Khan MI, Abd El-Salam NM. Potential biosorbent derived from Calligonum polygonoides for removal of methylene blue dye from aqueous solution. Sci World J. 2015;2015:562693. https://doi.org/10.1155/2015/562693NasrullahAKhanHKhanASManZMuhammadNKhanMIAbd El-SalamNM.Potential biosorbent derived from Calligonum polygonoides for removal of methylene blue dye from aqueous solution. Sci World J. 2015;2015:562693. https://doi.org/10.1155/2015/562693Search in Google Scholar
Ni’mah YL, Subandi APK, Suprapto S. The application of silica gel synthesized from chemical bottle waste for zinc (II) adsorption using Response Surface Methodology (RSM). Heliyon. 2022 Dec; 8(12):e11997. https://doi.org/10.1016/j.heliyon.2022.e11997Ni’mahYLSubandiAPKSupraptoS.The application of silica gel synthesized from chemical bottle waste for zinc (II) adsorption using Response Surface Methodology (RSM). Heliyon. 2022Dec; 8(12):e11997. https://doi.org/10.1016/j.heliyon.2022.e11997Search in Google Scholar
Priya AK, Gnanasekaran L, Dutta K, Rajendran S, Balakrishnan D, Soto-Moscoso M. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. Chemosphere. 2022 Nov;307(Pt_4):135957. https://doi.org/10.1016/j.chemosphere.2022.135957PriyaAKGnanasekaranLDuttaKRajendranSBalakrishnanDSoto-MoscosoM.Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms. Chemosphere. 2022Nov;307(Pt_4):135957. https://doi.org/10.1016/j.chemosphere.2022.135957Search in Google Scholar
Qi L, Zhang H, Guo Y, Zhang C, Xu Y. A novel calcium-binding peptide from bovine bone collagen hydrolysate and chelation mechanism and calcium absorption activity of peptide-calcium chelate. Food Chem. 2023 Jun;410:135387. https://doi.org/10.1016/j.foodchem.2023.135387QiLZhangHGuoYZhangCXuY.A novel calcium-binding peptide from bovine bone collagen hydrolysate and chelation mechanism and calcium absorption activity of peptide-calcium chelate. Food Chem. 2023Jun;410:135387. https://doi.org/10.1016/j.foodchem.2023.135387Search in Google Scholar
Razzak SA, Faruque MO, Alsheikh Z, Alsheikhmohamad L, Alkuroud D, Alfayez A, Hossain SMZ, Hossain MM. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ Adv. 2022 Apr; 7:100168. https://doi.org/10.1016/j.envadv.2022.100168RazzakSAFaruqueMOAlsheikhZAlsheikhmohamadLAlkuroudDAlfayezAHossainSMZHossainMM.A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ Adv. 2022Apr; 7:100168. https://doi.org/10.1016/j.envadv.2022.100168Search in Google Scholar
Rouibah K, Ferkous H, Delimi A, Himeur T, Benamira M, Zighed M, Darwish AS, Lemaoui T, Yadav KK, Bhutto JK, et al. Biosorption of zinc (II) from synthetic wastewater by using Inula Viscosa leaves as a low-cost biosorbent: Experimental and molecular modeling studies. J Environ Manage. 2023 Jan;326(Pt_A):116742. https://doi.org/10.1016/j.jenvman.2022.116742RouibahKFerkousHDelimiAHimeurTBenamiraMZighedMDarwishASLemaouiTYadavKKBhuttoJKBiosorption of zinc (II) from synthetic wastewater by using Inula Viscosa leaves as a low-cost biosorbent: Experimental and molecular modeling studies. J Environ Manage. 2023Jan;326(Pt_A):116742. https://doi.org/10.1016/j.jenvman.2022.116742Search in Google Scholar
Samuel MS, E A Abigail M, Ramalingam C. Biosorption of Cr(VI) by Ceratocystis paradoxa MSR2 using isotherm modelling, kinetic study and optimization of batch parameters using response surface methodology. PLoS One. 2015 Mar;10(3):e0118999. https://doi.org/10.1371/journal.pone.0118999SamuelMSE A AbigailMRamalingamC.Biosorption of Cr(VI) by Ceratocystis paradoxa MSR2 using isotherm modelling kinetic study and optimization of batch parameters using response surface methodology. PLoS One. 2015Mar;10(3):e0118999. https://doi.org/10.1371/journal.pone.0118999Search in Google Scholar
Sedlakova-Kadukova J, Kopcakova A, Gresakova L, Godany A, Pristas P. Bioaccumulation and biosorption of zinc by a novel Streptomyces K11 strain isolated from highly alkaline aluminium brown mud disposal site. Ecotoxicol Environ Saf. 2019 Jan;167:204–211. https://doi.org/10.1016/j.ecoenv.2018.09.123Sedlakova-KadukovaJKopcakovaAGresakovaLGodanyAPristasP.Bioaccumulation and biosorption of zinc by a novel Streptomyces K11 strain isolated from highly alkaline aluminium brown mud disposal site. Ecotoxicol Environ Saf. 2019Jan;167:204–211. https://doi.org/10.1016/j.ecoenv.2018.09.123Search in Google Scholar
Shabanizadeh H, Taghavijeloudar M. A sustainable approach for industrial wastewater treatment using pomegranate seeds in flocculation-coagulation process: Optimization of COD and turbidity removal by response surface methodology (RSM). J Water Process Eng. 2023 Jul;53:103651. https://doi.org/10.1016/j.jwpe.2023.103651ShabanizadehHTaghavijeloudarM.A sustainable approach for industrial wastewater treatment using pomegranate seeds in flocculation-coagulation process: Optimization of COD and turbidity removal by response surface methodology (RSM). J Water Process Eng. 2023Jul;53:103651. https://doi.org/10.1016/j.jwpe.2023.103651Search in Google Scholar
Sharma B, Shukla P. Lead bioaccumulation mediated by Bacillus cereus BPS-9 from an industrial waste contaminated site encoding heavy metal resistant genes and their transporters. J Hazard Mater. 2021 Jan;401:123285. https://doi.org/10.1016/j.jhazmat.2020.123285SharmaBShuklaP.Lead bioaccumulation mediated by Bacillus cereus BPS-9 from an industrial waste contaminated site encoding heavy metal resistant genes and their transporters. J Hazard Mater. 2021Jan;401:123285. https://doi.org/10.1016/j.jhazmat.2020.123285Search in Google Scholar
Sharma R, Jasrotia T, Umar A, Sharma M, Sharma S, Kumar R, Alkhanjaf AAM, Vats R, Beniwal V, Kumar R, et al. Effective removal of Pb(II) and Ni(II) ions by Bacillus cereus and Bacillus pumilus: An experimental and mechanistic approach. Environ Res. 2022 Sep;212(Pt B):113337. https://doi.org/10.1016/j.envres.2022.113337SharmaRJasrotiaTUmarASharmaMSharmaSKumarRAlkhanjafAAMVatsRBeniwalVKumarREffective removal of Pb(II) and Ni(II) ions by Bacillus cereus and Bacillus pumilus: An experimental and mechanistic approach. Environ Res. 2022Sep;212(Pt B):113337. https://doi.org/10.1016/j.envres.2022.113337Search in Google Scholar
Shi X, Duan Z, Jing Wang, Zhou W, Jiang M, Li T, Ma H, Zhu X. Simultaneous removal of multiple heavy metals using single chamber microbial electrolysis cells with biocathode in the micro-aerobic environment. Chemosphere. 2023 Mar;318:137982. https://doi.org/10.1016/j.chemosphere.2023.137982ShiXDuanZJingWangZhouWJiangMLiTMaHZhuX.Simultaneous removal of multiple heavy metals using single chamber microbial electrolysis cells with biocathode in the micro-aerobic environment. Chemosphere. 2023Mar;318:137982. https://doi.org/10.1016/j.chemosphere.2023.137982Search in Google Scholar
Shukla SR, Pai RS. Adsorption of Cu(II), Ni(II) and Zn(II) on dye loaded groundnut shells and sawdust. Sep Purif Technol. 2005 Apr;43(1):1–8. https://doi.org/10.1016/j.seppur.2004.09.003ShuklaSRPaiRS.Adsorption of Cu(II), Ni(II) and Zn(II) on dye loaded groundnut shells and sawdust. Sep Purif Technol. 2005Apr;43(1):1–8. https://doi.org/10.1016/j.seppur.2004.09.003Search in Google Scholar
Singh GK, Kaur R, Singh C, Singh P. Elemental analysis and characterization of vermilion and lipstick sample using SEM-EDS. Mater Today Proc. 2023. https://doi.org/10.1016/j.matpr.2022.12.180SinghGKKaurRSinghCSinghP.Elemental analysis and characterization of vermilion and lipstick sample using SEM-EDS. Mater Today Proc. 2023. https://doi.org/10.1016/j.matpr.2022.12.180Search in Google Scholar
Soleimani H, Sharafi K, Amiri Parian J, Jaafari J, Ebrahimzadeh G. Acidic modification of natural stone for Remazol Black B dye adsorption from aqueous solution-central composite design (CCD) and response surface methodology (RSM). Heliyon. 2023 Mar; 9(4):e14743. https://doi.org/10.1016/j.heliyon.2023.e14743SoleimaniHSharafiKAmiri ParianJJaafariJEbrahimzadehG.Acidic modification of natural stone for Remazol Black B dye adsorption from aqueous solution-central composite design (CCD) and response surface methodology (RSM). Heliyon. 2023Mar; 9(4):e14743. https://doi.org/10.1016/j.heliyon.2023.e14743Search in Google Scholar
Tangestani M, Naeimi B, Dobaradaran S, Keshtkar M, Salehpour P, Fouladi Z, Zareipour S, Sadeghzadeh F. Biosorption of fluoride from aqueous solutions by Rhizopus oryzae: Isotherm and kinetic evaluation. Environ Prog Sustainable Energy. 2022 Jan;41(1):e13725. https://doi.org/10.1002/ep.13725TangestaniMNaeimiBDobaradaranSKeshtkarMSalehpourPFouladiZZareipourSSadeghzadehF.Biosorption of fluoride from aqueous solutions by Rhizopus oryzae: Isotherm and kinetic evaluation. Environ Prog Sustainable Energy. 2022Jan;41(1):e13725. https://doi.org/10.1002/ep.13725Search in Google Scholar
Tawfik A, Ni SQ, Awad HM, Ismail S, Tyagi VK, Khan MS, Qyyum MA, Lee, M. Recent approaches for the production of high value-added biofuels from gelatinous wastewater. Energies, 2021 Aug;14(16):4936. https://doi.org/10.3390/en14164936TawfikANiSQAwadHMIsmailSTyagiVKKhanMSQyyumMALeeM.Recent approaches for the production of high value-added biofuels from gelatinous wastewater. Energies, 2021Aug;14(16):4936. https://doi.org/10.3390/en14164936Search in Google Scholar
Wang G, Yu N, Guo Y. A novel process to recycle the highly concentrated calcium and chloride ions in the gelatin acidification wastewater. J Cleaner Prod. 2018 Jul;188:62–68. https://doi.org/10.1016/j.jclepro.2018.03.215WangGYuNGuoY.A novel process to recycle the highly concentrated calcium and chloride ions in the gelatin acidification wastewater. J Cleaner Prod. 2018Jul;188:62–68. https://doi.org/10.1016/j.jclepro.2018.03.215Search in Google Scholar
Wang J, Chen C. Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol. 2014 May;160:129–141. https://doi.org/10.1016/j.biortech.2013.12.110WangJChenC.Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol. 2014May;160:129–141. https://doi.org/10.1016/j.biortech.2013.12.110Search in Google Scholar
Wang JP, Liu B, Liu GH, Chen DJ, Zhu YJ, Chen Z, Che JM. Genome sequence of Virgibacillus pantothenticus DSM 26T (ATCC 14576), a mesophilic and halotolerant bacterium isolated from soil. Genome Announc. 2015 Sep;3(5):e01064–15. https://doi.org/10.1128/genomeA.01064-15WangJPLiuBLiuGHChenDJZhuYJChenZCheJM.Genome sequence of Virgibacillus pantothenticus DSM 26T (ATCC 14576), a mesophilic and halotolerant bacterium isolated from soil. Genome Announc. 2015Sep;3(5):e01064–15. https://doi.org/10.1128/genomeA.01064-15Search in Google Scholar
Wang XL, Li Y, Huang J, Zhou YZ, Li BL, Liu DB. Efficiency and mechanism of adsorption of low concentration uranium in water by extracellular polymeric substances. J Environ Radioact. 2019 Feb; 197:81–89. https://doi.org/10.1016/j.jenvrad.2018.12.002WangXLLiYHuangJZhouYZLiBLLiuDB.Efficiency and mechanism of adsorption of low concentration uranium in water by extracellular polymeric substances. J Environ Radioact. 2019Feb; 197:81–89. https://doi.org/10.1016/j.jenvrad.2018.12.002Search in Google Scholar
Xu C, Wang J, Yang T, Chen X, Liu X, Ding X. Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology. Carbohydr Polym. 2015 May; 121:79–85. https://doi.org/10.1016/j.carbpol.2014.12.024XuCWangJYangTChenXLiuXDingX.Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile using response surface methodology. Carbohydr Polym. 2015May; 121:79–85. https://doi.org/10.1016/j.carbpol.2014.12.024Search in Google Scholar
Xu X, Zhang Z, Huang Q, Chen W. Biosorption performance of multimetal resistant fungus Penicillium chrysogenum XJ-1 for removal of Cu2+ and Cr6+ from aqueous solutions. Geomicrobiol J. 2017;35(1):40–49. https://doi.org/10.1080/01490451.2017.1310331XuXZhangZHuangQChenW.Biosorption performance of multimetal resistant fungus Penicillium chrysogenum XJ-1 for removal of Cu2+ and Cr6+ from aqueous solutions. Geomicrobiol J. 2017;35(1):40–49. https://doi.org/10.1080/01490451.2017.1310331Search in Google Scholar
Yang Y, Hu M, Zhou D, Fan W, Wang X, Huo M. Bioremoval of Cu2+ from CMP wastewater by a novel copper-resistant bacterium Cupriavidus gilardii CR3: Characteristics and mechanisms. RSC Adv. 2017;7:18793–18802. https://doi.org/10.1039/c7ra01163fYangYHuMZhouDFanWWangXHuoM.Bioremoval of Cu2+ from CMP wastewater by a novel copper-resistant bacterium Cupriavidus gilardii CR3: Characteristics and mechanisms. RSC Adv. 2017;7:18793–18802. https://doi.org/10.1039/c7ra01163fSearch in Google Scholar
Yuan W, Cheng J, Huang H, Xiong S, Gao J, Zhang J, Feng S. Optimization of cadmium biosorption by Shewanella putrefaciens using a Box-Behnken design. Ecotoxicol Environ Saf. 2019 Jul;175:138–147. https://doi.org/10.1016/j.ecoenv.2019.03.057YuanWChengJHuangHXiongSGaoJZhangJFengS.Optimization of cadmium biosorption by Shewanella putrefaciens using a Box-Behnken design. Ecotoxicol Environ Saf. 2019Jul;175:138–147. https://doi.org/10.1016/j.ecoenv.2019.03.057Search in Google Scholar