Cite

Anesi A, Rubert J, Oluwagbemigun K, Orozco-Ruiz X, Nöthlings U, Breteler MMB, Mattivi F. Metabolic profiling of human plasma and urine, targeting tryptophan, tyrosine and branched chain amino acid pathways. Metabolites. 2019 Nov 01;9(11):261. https://doi.org/10.3390/metabo9110261AnesiARubertJOluwagbemigunKOrozco-RuizXNöthlingsUBretelerMMBMattiviF. Metabolic profiling of human plasma and urine, targeting tryptophan, tyrosine and branched chain amino acid pathways. Metabolites.2019Nov01;9(11):261. https://doi.org/10.3390/metabo911026110.3390/metabo9110261691826731683910Search in Google Scholar

Bi Y, Cox MS, Zhang F, Suen G, Zhang N, Tu Y, Diao Q. Feeding modes shape the acquisition and structure of the initial gut microbiota in newborn lambs. Environ Microbiol. 2019 Jul;21(7): 2333–2346. https://doi.org/10.1111/1462-2920.14614BiYCoxMSZhangFSuenGZhangNTuYDiaoQ. Feeding modes shape the acquisition and structure of the initial gut microbiota in newborn lambs. Environ Microbiol.2019Jul;21(7): 23332346. https://doi.org/10.1111/1462-2920.1461410.1111/1462-2920.14614684974330938032Search in Google Scholar

Briggs HM. International pig breed encyclopedia. Indianapolis (USA): Elanco Products Company; 1983.BriggsHM. International pig breed encyclopedia. Indianapolis (USA): Elanco Products Company; 1983.Search in Google Scholar

Büsing K, Zeyner A. Effects of oral Enterococcus faecium strain DSM 10663 NCIMB 10415 on diarrhoea patterns and performance of sucking piglets. Benef Microbes. 2015 Jan 01;6(1):41–44. https://doi.org/10.3920/BM2014.0008BüsingKZeynerA. Effects of oral Enterococcus faecium strain DSM 10663 NCIMB 10415 on diarrhoea patterns and performance of sucking piglets. Benef Microbes.2015Jan01;6(1):4144. https://doi.org/10.3920/BM2014.000810.3920/BM2014.000825213026Search in Google Scholar

Chen L, Yin YL, Jobgen WS, Jobgen SC, Knabe DA, Hu WX, Wu G. In vitro oxidation of essential amino acids by jejunal mucosal cells of growing pigs. Livest Sci. 2007 May;109(1–3):19–23. https://doi.org/10.1016/j.livsci.2007.01.027ChenLYinYLJobgenWSJobgenSCKnabeDAHuWXWuG. In vitro oxidation of essential amino acids by jejunal mucosal cells of growing pigs. Livest Sci.2007May;109(1–3):1923. https://doi.org/10.1016/j.livsci.2007.01.02710.1016/j.livsci.2007.01.027Search in Google Scholar

Crespo-Piazuelo D, Estellé J, Revilla M, Criado-Mesas L, Ramayo-Caldas Y, Óvilo C, Fernández AI, Ballester M, Folch JM. Characterization of bacterial microbiota compositions along the intestinal tract in pigs and their interactions and functions. Sci Rep. 2018 Dec;8(1):12727. https://doi.org/10.1038/s41598-018-30932-6Crespo-PiazueloDEstelléJRevillaMCriado-MesasLRamayo-CaldasYÓviloCFernándezAIBallesterMFolchJM. Characterization of bacterial microbiota compositions along the intestinal tract in pigs and their interactions and functions. Sci Rep.2018Dec;8(1):12727. https://doi.org/10.1038/s41598-018-30932-610.1038/s41598-018-30932-6610915830143657Search in Google Scholar

Dai ZL, Zhang J, Wu G, Zhu WY. Utilization of amino acids by bacteria from the pig small intestine. Amino Acids. 2010 Nov; 39(5):1201–1215. https://doi.org/10.1007/s00726-010-0556-9DaiZLZhangJWuGZhuWY. Utilization of amino acids by bacteria from the pig small intestine. Amino Acids.2010Nov; 39(5):12011215. https://doi.org/10.1007/s00726-010-0556-910.1007/s00726-010-0556-920300787Search in Google Scholar

Diao S, Huang S, Chen Z, Teng J, Ma Y, Yuan X, Chen Z, Zhang H, Li J, Zhang Z. Genome-wide signatures of selection detection in three south China indigenous pigs. Genes (Basel). 2019 May 07; 10(5):346. https://doi.org/10.3390/genes10050346DiaoSHuangSChenZTengJMaYYuanXChenZZhangHLiJZhangZ. Genome-wide signatures of selection detection in three south China indigenous pigs. Genes (Basel).2019May07; 10(5):346. https://doi.org/10.3390/genes1005034610.3390/genes10050346656311331067806Search in Google Scholar

Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science. 2005 Jun 10;308(5728):1635–1638. https://doi.org/10.1126/science.1110591EckburgPBBikEMBernsteinCNPurdomEDethlefsenLSargentMGillSRNelsonKERelmanDA. Diversity of the human intestinal microbial flora. Science.2005Jun10;308(5728):16351638. https://doi.org/10.1126/science.111059110.1126/science.1110591139535715831718Search in Google Scholar

Etzold S, Kober OI, MacKenzie DA, Tailford LE, Gunning AP, Walshaw J, Hemmings AM, Juge N. Structural basis for adaptation of lactobacilli to gastrointestinal mucus. Environ Microbiol. 2014 Mar;16(3):888–903. https://doi.org/10.1111/1462-2920.12377EtzoldSKoberOIMacKenzieDATailfordLEGunningAPWalshawJHemmingsAMJugeN. Structural basis for adaptation of lactobacilli to gastrointestinal mucus. Environ Microbiol.2014Mar;16(3):888903. https://doi.org/10.1111/1462-2920.1237710.1111/1462-2920.1237724373178Search in Google Scholar

Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, Ravel J. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome. 2014;2(1):6. https://doi.org/10.1186/2049-2618-2-6FadroshDWMaBGajerPSengamalayNOttSBrotmanRMRavelJ. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome.2014;2(1):6. https://doi.org/10.1186/2049-2618-2-610.1186/2049-2618-2-6394016924558975Search in Google Scholar

Frese SA, Parker K, Calvert CC, Mills DA. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome. 2015 Dec;3(1):28. https://doi.org/10.1186/s40168-015-0091-8FreseSAParkerKCalvertCCMillsDA. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome.2015Dec;3(1):28. https://doi.org/10.1186/s40168-015-0091-810.1186/s40168-015-0091-8449917626167280Search in Google Scholar

Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, Spector TD, Bell JT, Clark AG, Ley RE. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe. 2016 May;19(5):731–743. https://doi.org/10.1016/j.chom.2016.04.017GoodrichJKDavenportERBeaumontMJacksonMAKnightROberCSpectorTDBellJTClarkAGLeyRE. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe.2016May;19(5):731743. https://doi.org/10.1016/j.chom.2016.04.01710.1016/j.chom.2016.04.017491594327173935Search in Google Scholar

Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, et al. Human genetics shape the gut microbiome. Cell. 2014 Nov; 159(4):789–799. https://doi.org/10.1016/j.cell.2014.09.053GoodrichJKWatersJLPooleACSutterJLKorenOBlekhmanRBeaumontMVan TreurenWKnightRBellJTet al. Human genetics shape the gut microbiome. Cell.2014Nov; 159(4):789799. https://doi.org/10.1016/j.cell.2014.09.05310.1016/j.cell.2014.09.053425547825417156Search in Google Scholar

Hancox LR, Le BM, Richards PJ, Guillou D, Dodd CE, Mellits KH. Effect of a single dose of Saccharomyces cerevisiae var. boulardii on the occurrence of porcine neonatal diarrhoea. Animal. 2015;9(11):1756–1759. https://doi.org/10.1017/S1751731114002687HancoxLRLeBMRichardsPJGuillouDDoddCEMellitsKH. Effect of a single dose of Saccharomyces cerevisiae var. boulardii on the occurrence of porcine neonatal diarrhoea. Animal.2015;9(11):17561759. https://doi.org/10.1017/S175173111400268710.1017/S175173111400268726159939Search in Google Scholar

Hu J, Ma L, Nie Y, Chen J, Zheng W, Wang X, Xie C, Zheng Z, Wang Z, Yang T, et al. A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets. Cell Host Microbe. 2018 Dec;24(6):817–832.e8. https://doi.org/10.1016/j.chom.2018.11.006HuJMaLNieYChenJZhengWWangXXieCZhengZWangZYangTet al. A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets. Cell Host Microbe.2018Dec;24(6):817832.e8. https://doi.org/10.1016/j.chom.2018.11.00610.1016/j.chom.2018.11.00630543777Search in Google Scholar

Huang MZ, Wang SY, Wang H, Cui DA, Yang YJ, Liu XW, Kong XJ, Li JY. Differences in the intestinal microbiota between uninfected piglets and piglets infected with porcine epidemic diarrhea virus. PLoS One. 2018 Feb 15;13(2):e0192992. https://doi.org/10.1371/journal.pone.0192992HuangMZWangSYWangHCuiDAYangYJLiuXWKongXJLiJY. Differences in the intestinal microbiota between uninfected piglets and piglets infected with porcine epidemic diarrhea virus. PLoS One.2018Feb15;13(2):e0192992. https://doi.org/10.1371/journal.pone.019299210.1371/journal.pone.0192992581401129447243Search in Google Scholar

Javurek AB, Spollen WG, Ali AMM, Johnson SA, Lubahn DB, Bivens NJ, Bromert KH, Ellersieck MR, Givan SA, Rosenfeld CS. Discovery of a novel seminal fluid microbiome and influence of estrogen receptor alpha genetic status. Sci Rep. 2016 Mar;6(1):23027. https://doi.org/10.1038/srep23027JavurekABSpollenWGAliAMMJohnsonSALubahnDBBivensNJBromertKHEllersieckMRGivanSARosenfeldCS. Discovery of a novel seminal fluid microbiome and influence of estrogen receptor alpha genetic status. Sci Rep.2016Mar;6(1):23027. https://doi.org/10.1038/srep2302710.1038/srep23027478979726971397Search in Google Scholar

Jeong HS, Kim DW, Chun SY, Sung S, Kim HJ, Cho S, Kim H, Oh SJ. Native Pig and Chicken Breed Database: NPCDB. Asian-Australas J Anim Sci. 2014 Oct;27(10):1394–1398. https://doi.org/10.5713/ajas.2014.14059JeongHSKimDWChunSYSungSKimHJChoSKimHOhSJ. Native Pig and Chicken Breed Database: NPCDB. Asian-Australas J Anim Sci.2014Oct;27(10):13941398. https://doi.org/10.5713/ajas.2014.1405910.5713/ajas.2014.14059415017025178289Search in Google Scholar

Kim HB, Isaacson RE. The pig gut microbial diversity: understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet Microbiol. 2015 Jun;177(3–4):242–251. https://doi.org/10.1016/j.vetmic.2015.03.014KimHBIsaacsonRE. The pig gut microbial diversity: understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet Microbiol.2015Jun;177(3–4):242251. https://doi.org/10.1016/j.vetmic.2015.03.01410.1016/j.vetmic.2015.03.01425843944Search in Google Scholar

Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013 Sep;31(9):814–821. https://doi.org/10.1038/nbt.2676LangilleMGIZaneveldJCaporasoJGMcDonaldDKnightsDReyesJAClementeJCBurkepileDEVega ThurberRLKnightRet al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol.2013Sep;31(9):814821. https://doi.org/10.1038/nbt.267610.1038/nbt.2676381912123975157Search in Google Scholar

Levy M, Blacher E, Elinav E. Microbiome, metabolites and host immunity. Curr Opin Microbiol. 2017 Feb;35:8–15. https://doi.org/10.1016/j.mib.2016.10.003LevyMBlacherEElinavE. Microbiome, metabolites and host immunity. Curr Opin Microbiol.2017Feb;35:815. https://doi.org/10.1016/j.mib.2016.10.00310.1016/j.mib.2016.10.00327883933Search in Google Scholar

Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006 Feb;124(4):837–848. https://doi.org/10.1016/j.cell.2006.02.017LeyREPetersonDAGordonJI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell.2006Feb;124(4):837848. https://doi.org/10.1016/j.cell.2006.02.01710.1016/j.cell.2006.02.01716497592Search in Google Scholar

Li X, Cao Z, Yang Y, Chen L, Liu J, Lin Q, Qiao Y, Zhao Z, An Q, Zhang C, et al. Correlation between jejunal microbial diversity and muscle fatty acids deposition in broilers reared at different ambient temperatures. Sci Rep. 2019 Dec;9(1):11022. https://doi.org/10.1038/s41598-019-47323-0LiXCaoZYangYChenLLiuJLinQQiaoYZhaoZAnQZhangCet al. Correlation between jejunal microbial diversity and muscle fatty acids deposition in broilers reared at different ambient temperatures. Sci Rep.2019Dec;9(1):11022. https://doi.org/10.1038/s41598-019-47323-010.1038/s41598-019-47323-0666744631363155Search in Google Scholar

Li Z, Wu Z, Ren G, Zhao Y, Liu D. Expression patterns of insulin-like growth factor system members and their correlations with growth and carcass traits in Landrace and Lantang pigs during postnatal development. Mol Biol Rep. 2013 May;40(5):3569–3576. https://doi.org/10.1007/s11033-012-2430-1LiZWuZRenGZhaoYLiuD. Expression patterns of insulin-like growth factor system members and their correlations with growth and carcass traits in Landrace and Lantang pigs during postnatal development. Mol Biol Rep.2013May;40(5):35693576. https://doi.org/10.1007/s11033-012-2430-110.1007/s11033-012-2430-123269622Search in Google Scholar

Liu Y, Chen X, Liu Y, Chen T, Zhang Q, Zhang H, Zhu Z, Chai Y, Zhang J. Metabolomic study of the protective effect of Gandi capsule for diabetic nephropathy. Chem Biol Interact. 2019 Dec;314:108815. https://doi.org/10.1016/j.cbi.2019.108815LiuYChenXLiuYChenTZhangQZhangHZhuZChaiYZhangJ. Metabolomic study of the protective effect of Gandi capsule for diabetic nephropathy. Chem Biol Interact.2019Dec;314:108815. https://doi.org/10.1016/j.cbi.2019.10881510.1016/j.cbi.2019.10881531499054Search in Google Scholar

Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012 Sep;489(7415):220–230. https://doi.org/10.1038/nature11550LozuponeCAStombaughJIGordonJIJanssonJKKnightR. Diversity, stability and resilience of the human gut microbiota. Nature.2012Sep;489(7415):220230. https://doi.org/10.1038/nature1155010.1038/nature11550357737222972295Search in Google Scholar

Martinez-Guryn K, Leone V, Chang EB. Regional diversity of the gastrointestinal microbiome. Cell Host Microbe. 2019 Sep;26(3): 314–324. https://doi.org/10.1016/j.chom.2019.08.011Martinez-GurynKLeoneVChangEB. Regional diversity of the gastrointestinal microbiome. Cell Host Microbe.2019Sep;26(3): 314324. https://doi.org/10.1016/j.chom.2019.08.01110.1016/j.chom.2019.08.011675027931513770Search in Google Scholar

Patil Y, Gooneratne R, Ju XH. Interactions between host and gut microbiota in domestic pigs: a review. Gut Microbes. 2020 May 3; 11(3):310–334. https://doi.org/10.1080/19490976.2019.1690363PatilYGooneratneRJuXH. Interactions between host and gut microbiota in domestic pigs: a review. Gut Microbes.2020May3; 11(3):310334. https://doi.org/10.1080/19490976.2019.169036310.1080/19490976.2019.1690363752434931760878Search in Google Scholar

Pluske JR. Feed- and feed additives-related aspects of gut health and development in weanling pigs. J Anim Sci Biotechnol. 2013 Dec; 4(1):1. https://doi.org/10.1186/2049-1891-4-1PluskeJR. Feed- and feed additives-related aspects of gut health and development in weanling pigs. J Anim Sci Biotechnol.2013Dec; 4(1):1. https://doi.org/10.1186/2049-1891-4-110.1186/2049-1891-4-1362374323289727Search in Google Scholar

Qu X, Gao H, Sun J, Tao L, Zhang Y, Zhai J, Song Y, Hu T, Li Z. Identification of key metabolites during cisplatin-induced acute kidney injury using an HPLC-TOF/MS-based non-targeted urine and kidney metabolomics approach in rats. Toxicology. 2020 Feb; 431:152366. https://doi.org/10.1016/j.tox.2020.152366QuXGaoHSunJTaoLZhangYZhaiJSongYHuTLiZ. Identification of key metabolites during cisplatin-induced acute kidney injury using an HPLC-TOF/MS-based non-targeted urine and kidney metabolomics approach in rats. Toxicology.2020Feb; 431:152366. https://doi.org/10.1016/j.tox.2020.15236610.1016/j.tox.2020.15236631926187Search in Google Scholar

Shang L, Deng D, Buskermolen JK, Janus MM, Krom BP, Roffel S, Waaijman T, van Loveren C, Crielaard W, Gibbs S. Multi-species oral biofilm promotes reconstructed human gingiva epithelial barrier function. Sci Rep. 2018 Dec;8(1):16061. https://doi.org/10.1038/s41598-018-34390-yShangLDengDBuskermolenJKJanusMMKromBPRoffelSWaaijmanTvan LoverenCCrielaardWGibbsS. Multi-species oral biofilm promotes reconstructed human gingiva epithelial barrier function. Sci Rep.2018Dec;8(1):16061. https://doi.org/10.1038/s41598-018-34390-y10.1038/s41598-018-34390-y620775130375445Search in Google Scholar

Stokes CR. The development and role of microbial-host interactions in gut mucosal immune development. J Anim Sci Biotechnol. 2017 Dec;8(1):12. https://doi.org/10.1186/s40104-016-0138-0StokesCR. The development and role of microbial-host interactions in gut mucosal immune development. J Anim Sci Biotechnol.2017Dec;8(1):12. https://doi.org/10.1186/s40104-016-0138-010.1186/s40104-016-0138-0527022328149511Search in Google Scholar

Thompson CL, Wang B, Holmes AJ. The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME J. 2008 Jul;2(7):739–748. https://doi.org/10.1038/ismej.2008.29ThompsonCLWangBHolmesAJ. The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME J.2008Jul;2(7):739748. https://doi.org/10.1038/ismej.2008.2910.1038/ismej.2008.2918356821Search in Google Scholar

Turnbaugh PJ, Gordon JI. An invitation to the marriage of metagenomics and metabolomics. Cell. 2008 Sep;134(5):708–713. https://doi.org/10.1016/j.cell.2008.08.025TurnbaughPJGordonJI. An invitation to the marriage of metagenomics and metabolomics. Cell.2008Sep;134(5):708713. https://doi.org/10.1016/j.cell.2008.08.02510.1016/j.cell.2008.08.02518775300Search in Google Scholar

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006 Dec;444(7122):1027–1031. https://doi.org/10.1038/nature05414TurnbaughPJLeyREMahowaldMAMagriniVMardisERGordonJI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature.2006Dec;444(7122):10271031. https://doi.org/10.1038/nature0541410.1038/nature0541417183312Search in Google Scholar

Wang T, Teng K, Liu Y, Shi W, Zhang J, Dong E, Zhang X, Tao Y, Zhong J. Lactobacillus plantarum PFM 105 promotes intestinal development through modulation of gut microbiota in weaning piglets. Front Microbiol. 2019 Feb 5;10:90. https://doi.org/10.3389/fmicb.2019.00090WangTTengKLiuYShiWZhangJDongEZhangXTaoYZhongJ. Lactobacillus plantarum PFM 105 promotes intestinal development through modulation of gut microbiota in weaning piglets. Front Microbiol.2019Feb5;10:90. https://doi.org/10.3389/fmicb.2019.0009010.3389/fmicb.2019.00090637175030804899Search in Google Scholar

Wu G. Intestinal mucosal amino acid catabolism. J Nutr. 1998 Aug 01;128(8):1249–1252. https://doi.org/10.1093/jn/128.8.1249WuG. Intestinal mucosal amino acid catabolism. J Nutr.1998Aug01;128(8):12491252. https://doi.org/10.1093/jn/128.8.124910.1093/jn/128.8.12499687539Search in Google Scholar

Xiao Y, Kong F, Xiang Y, Zhou W, Wang J, Yang H, Zhang G, Zhao J. Comparative biogeography of the gut microbiome between Jinhua and Landrace pigs. Sci Rep. 2018 Dec;8(1):5985. https://doi.org/10.1038/s41598-018-24289-zXiaoYKongFXiangYZhouWWangJYangHZhangGZhaoJ. Comparative biogeography of the gut microbiome between Jinhua and Landrace pigs. Sci Rep.2018Dec;8(1):5985. https://doi.org/10.1038/s41598-018-24289-z10.1038/s41598-018-24289-z589908629654314Search in Google Scholar

Yang H, Huang X, Fang S, He M, Zhao Y, Wu Z, Yang M, Zhang Z, Chen C, Huang L. Unraveling the fecal microbiota and metagenomic functional capacity associated with feed efficiency in pigs. Front Microbiol. 2017 Aug 15;8:1555. https://doi.org/10.3389/fmicb.2017.01555YangHHuangXFangSHeMZhaoYWuZYangMZhangZChenCHuangL. Unraveling the fecal microbiota and metagenomic functional capacity associated with feed efficiency in pigs. Front Microbiol.2017Aug15;8:1555. https://doi.org/10.3389/fmicb.2017.0155510.3389/fmicb.2017.01555555953528861066Search in Google Scholar

Yang L, Bian G, Su Y, Zhu W. Comparison of faecal microbial community of lantang, bama, erhualian, meishan, xiaomeishan, duroc, landrace, and yorkshire sows. Asian-Australas J Anim Sci. 2014 Jun 1;27(6):898–906. https://doi.org/10.5713/ajas.2013.13621YangLBianGSuYZhuW. Comparison of faecal microbial community of lantang, bama, erhualian, meishan, xiaomeishan, duroc, landrace, and yorkshire sows. Asian-Australas J Anim Sci.2014Jun1;27(6):898906. https://doi.org/10.5713/ajas.2013.1362110.5713/ajas.2013.13621409318325050029Search in Google Scholar

eISSN:
2544-4646
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology