Open Access

Characterization of Ligninolytic Bacteria and Analysis of Alkali-Lignin Biodegradation Products


Cite

Barros F, Dykes L, Awika JM, Rooney LW. Accelerated solvent extraction of phenolic compounds from sorghum brans. J Cereal Sci. 2013 Sep;58(2):305–312. https://doi.org/10.1016/j.jcs.2013.05.011BarrosFDykesLAwikaJMRooneyLW. Accelerated solvent extraction of phenolic compounds from sorghum brans. J Cereal Sci.2013Sep;58(2):305312. https://doi.org/10.1016/j.jcs.2013.05.01110.1016/j.jcs.2013.05.011Search in Google Scholar

Bharagava RN, Mani S, Mulla SI, Saratale GD. Degradation and decolourization potential of an ligninolytic enzyme producing Aeromonas hydrophila for crystal violet dye and its phytotoxicity evaluation. Ecotoxicol Environ Saf. 2018 Jul;156:166–175. https://doi.org/10.1016/j.ecoenv.2018.03.012BharagavaRNManiSMullaSISarataleGD. Degradation and decolourization potential of an ligninolytic enzyme producing Aeromonas hydrophila for crystal violet dye and its phytotoxicity evaluation. Ecotoxicol Environ Saf.2018Jul;156:166175. https://doi.org/10.1016/j.ecoenv.2018.03.01210.1016/j.ecoenv.2018.03.01229550434Search in Google Scholar

Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep. 2011b;28(12):1883–1896. https://doi.org/10.1039/c1np00042jBuggTDHAhmadMHardimanEMRahmanpourR. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep.2011b;28(12):18831896. https://doi.org/10.1039/c1np00042j10.1039/c1np00042j21918777Search in Google Scholar

Bugg TDH, Ahmad M, Hardiman EM, Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol. 2011a Jun;22(3):394–400. https://doi.org/10.1016/j.copbio.2010.10.009BuggTDHAhmadMHardimanEMSinghR. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol.2011aJun;22(3):394400. https://doi.org/10.1016/j.copbio.2010.10.00910.1016/j.copbio.2010.10.00921071202Search in Google Scholar

Carlos C, Fan H, Currie CR. Substrate shift reveals roles for members of bacterial consortia in degradation of plant cell wall polymers. Front Microbiol. 2018 Mar 1;9:364. https://doi.org/10.3389/fmicb.2018.00364CarlosCFanHCurrieCR. Substrate shift reveals roles for members of bacterial consortia in degradation of plant cell wall polymers. Front Microbiol.2018Mar1;9:364. https://doi.org/10.3389/fmicb.2018.0036410.3389/fmicb.2018.00364583923429545786Search in Google Scholar

Chai L, Chen Y, Tang C, Yang Z, Zheng Y, Shi Y. Depolymerization and decolorization of kraft lignin by bacterium Comamonas sp. B-9. Appl Microbiol Biotechnol. 2014 Feb;98(4):1907–1912. https://doi.org/10.1007/s00253-013-5166-5ChaiLChenYTangCYangZZhengYShiY. Depolymerization and decolorization of kraft lignin by bacterium Comamonas sp. B-9. Appl Microbiol Biotechnol.2014Feb;98(4):19071912. https://doi.org/10.1007/s00253-013-5166-510.1007/s00253-013-5166-523948726Search in Google Scholar

Chen BY, Chen WM, Yang CC, Li WD, Kuo HY. Characterization of Aeromonas hydrophila and Acinetobacter strains isolated from Northeast Taiwan for degradation of aromatic compounds. J Biotechnol. 2008 Oct;136:S700. https://doi.org/10.1016/j.jbiotec.2008.07.1624ChenBYChenWMYangCCLiWDKuoHY. Characterization of Aeromonas hydrophila and Acinetobacter strains isolated from Northeast Taiwan for degradation of aromatic compounds. J Biotechnol.2008Oct;136:S700. https://doi.org/10.1016/j.jbiotec.2008.07.162410.1016/j.jbiotec.2008.07.1624Search in Google Scholar

Chen Y, Li C, Zhou Z, Wen J, You X, Mao Y, Lu C, Huo G, Jia X. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis. Appl Biochem Biotechnol. 2014 Apr;172(7):3433–3447. https://doi.org/10.1007/s12010-014-0777-6ChenYLiCZhouZWenJYouXMaoYLuCHuoGJiaX. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis. Appl Biochem Biotechnol.2014Apr;172(7):34333447. https://doi.org/10.1007/s12010-014-0777-610.1007/s12010-014-0777-624532465Search in Google Scholar

Chen YH, Chai LY, Zhu YH, Yang ZH, Zheng Y, Zhang H. Biodegradation of kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips. J Appl Microbiol. 2012 May;112(5): 900–906. https://doi.org/10.1111/j.1365-2672.2012.05275.xChenYHChaiLYZhuYHYangZHZhengYZhangH. Biodegradation of kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips. J Appl Microbiol.2012May;112(5): 900906. https://doi.org/10.1111/j.1365-2672.2012.05275.x10.1111/j.1365-2672.2012.05275.x22380656Search in Google Scholar

Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, et al. Lignocellulose degradation mechanisms across the Tree of Life. Curr Opin Chem Biol. 2015 Dec;29:108–119. https://doi.org/10.1016/j.cbpa.2015.10.018CraggSMBeckhamGTBruceNCBuggTDHDistelDLDupreePEtxabeAGGoodellBSJellisonJMcGeehanJE. Lignocellulose degradation mechanisms across the Tree of Life. Curr Opin Chem Biol.2015Dec;29:108119. https://doi.org/10.1016/j.cbpa.2015.10.01810.1016/j.cbpa.2015.10.018757185326583519Search in Google Scholar

Eaton RW, Ribbons DW. Metabolism of dibutylphthalate and phthalate by Micrococcus sp. strain 12B. J Bacteriol. 1982;151(1): 48–57. https://doi.org/10.1128/JB.151.1.48-57.1982EatonRWRibbonsDW. Metabolism of dibutylphthalate and phthalate by Micrococcus sp. strain 12B. J Bacteriol.1982;151(1): 4857. https://doi.org/10.1128/JB.151.1.48-57.198210.1128/jb.151.1.48-57.1982Search in Google Scholar

Grant DJW. The degradative versatility, arylesterase activity and hydroxylation reactions of Acinetobacter lwoffi NCIB 10553. J Appl Bacteriol. 1973 Mar;36(1):47–59. https://doi.org/10.1111/j.1365-2672.1973.tb04072.xGrantDJW. The degradative versatility, arylesterase activity and hydroxylation reactions of Acinetobacter lwoffi NCIB 10553. J Appl Bacteriol.1973Mar;36(1):4759. https://doi.org/10.1111/j.1365-2672.1973.tb04072.x10.1111/j.1365-2672.1973.tb04072.xSearch in Google Scholar

Hatfield RD, Rancour DM, Marita JM. Grass cell walls: A story of cross-linking. Front Plant Sci. 2017 Jan 18;7:2056. https://doi.org/10.3389/fpls.2016.02056HatfieldRDRancourDMMaritaJM. Grass cell walls: A story of cross-linking. Front Plant Sci.2017Jan18;7:2056. https://doi.org/10.3389/fpls.2016.0205610.3389/fpls.2016.02056Search in Google Scholar

Hwang S, Lee CH, Ahn IS. Product identification of guaiacol oxidation catalyzed by manganese peroxidase. J Ind Eng Chem. 2008 Jul;14(4):487–492. https://doi.org/10.1016/j.jiec.2008.02.008HwangSLeeCHAhnIS. Product identification of guaiacol oxidation catalyzed by manganese peroxidase. J Ind Eng Chem.2008Jul;14(4):487492. https://doi.org/10.1016/j.jiec.2008.02.00810.1016/j.jiec.2008.02.008Search in Google Scholar

Iyer AP, Mahadevan A. Lignin degradation by bacteria. Prog Ind Microbiol. 2002;36:311–330. https://doi.org/10.1016/S0079-6352(02)80017-0IyerAPMahadevanA. Lignin degradation by bacteria. Prog Ind Microbiol.2002;36:311330. https://doi.org/10.1016/S0079-6352(02)80017-010.1016/S0079-6352(02)80017-0Search in Google Scholar

Jiang Y, Qi H, Zhang X, Chen G. Inorganic impurity removal from waste oil and wash-down water by Acinetobacter johnsonii. J Hazard Mater. 2012 Nov;239–240:289–293. https://doi.org/10.1016/j.jhazmat.2012.08.076JiangYQiHZhangXChenG. Inorganic impurity removal from waste oil and wash-down water by Acinetobacter johnsonii. J Hazard Mater.2012Nov;239–240:289293. https://doi.org/10.1016/j.jhazmat.2012.08.07610.1016/j.jhazmat.2012.08.076Search in Google Scholar

Jiang Y, Qi H, Zhang XM. Co-biodegradation of naphthalene and phenanthrene by Acinetobacter johnsonii. Polycycl Aromat Compd. 2020 Mar 14;40(2):422–431. https://doi.org/10.1080/10406638.2018.1441881JiangYQiHZhangXM. Co-biodegradation of naphthalene and phenanthrene by Acinetobacter johnsonii. Polycycl Aromat Compd.2020Mar14;40(2):422431. https://doi.org/10.1080/10406638.2018.144188110.1080/10406638.2018.1441881Search in Google Scholar

Kang X, Kirui A, Dickwella Widanage MC, Mentink-Vigier F, Cosgrove DJ, Wang T. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat Commun. 2019 Dec;10(1):347. https://doi.org/10.1038/s41467-018-08252-0KangXKiruiADickwella WidanageMCMentink-VigierFCosgroveDJWangT. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat Commun.2019Dec;10(1):347. https://doi.org/10.1038/s41467-018-08252-010.1038/s41467-018-08252-0Search in Google Scholar

Kim SI, Ha KS, Leem SH. Differential organization and transcription of the cat2 gene cluster in aniline-assimilating Acinetobacter lwoffii K24. J Biosci Bioeng. 1999 Jan;88(3):250–257. https://doi.org/10.1016/S1389-1723(00)80005-5KimSIHaKSLeemSH. Differential organization and transcription of the cat2 gene cluster in aniline-assimilating Acinetobacter lwoffii K24. J Biosci Bioeng.1999Jan;88(3):250257. https://doi.org/10.1016/S1389-1723(00)80005-510.1016/S1389-1723(00)80005-5Search in Google Scholar

Lee SY, Kim GH, Yun SH, Choi CW, Yi YS, Kim J, Chung YH, Park EC, Kim SI. Proteogenomic characterization of monocyclic aromatic hydrocarbon degradation pathways in the aniline-degrading bacterium Burkholderia sp. K24. PLoS One. 2016 Apr 28;11(4):e0154233. https://doi.org/10.1371/journal.pone.0154233LeeSYKimGHYunSHChoiCWYiYSKimJChungYHParkECKimSI. Proteogenomic characterization of monocyclic aromatic hydrocarbon degradation pathways in the aniline-degrading bacterium Burkholderia sp. K24. PLoS One.2016Apr28;11(4):e0154233. https://doi.org/10.1371/journal.pone.015423310.1371/journal.pone.0154233484978727124467Search in Google Scholar

Lee SY, Yun SH, Choi CW, Lee DG, Choi JS, Kahng HY, Kim SI. Draft genome sequence of an aniline-degrading bacterium, Burkholderia sp. K24. Genome Announc. 2014 Dec 04;2(6):e01250–14. https://doi.org/10.1128/genomeA.01250-14LeeSYYunSHChoiCWLeeDGChoiJSKahngHYKimSI. Draft genome sequence of an aniline-degrading bacterium, Burkholderia sp. K24. Genome Announc.2014Dec04;2(6):e0125014. https://doi.org/10.1128/genomeA.01250-1410.1128/genomeA.01250-14425618925477408Search in Google Scholar

Masai E, Katayama Y, Fukuda M. Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem. 2007 Jan 23;71(1):1–15. https://doi.org/10.1271/bbb.60437MasaiEKatayamaYFukudaM. Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem.2007Jan23;71(1):115. https://doi.org/10.1271/bbb.6043710.1271/bbb.6043717213657Search in Google Scholar

Min K, Gong G, Woo HM, Kim Y, Um Y. A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer. Sci Rep. 2015 Jul;5(1):8245. https://doi.org/10.1038/srep08245MinKGongGWooHMKimYUmY. A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer. Sci Rep.2015Jul;5(1):8245. https://doi.org/10.1038/srep0824510.1038/srep08245431616325650125Search in Google Scholar

Nishimura H, Kamiya A, Nagata T, Katahira M, Watanabe T. Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls. Sci Rep. 2018 Dec;8(1):6538. https://doi.org/10.1038/s41598-018-24328-9NishimuraHKamiyaANagataTKatahiraMWatanabeT. Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls. Sci Rep.2018Dec;8(1):6538. https://doi.org/10.1038/s41598-018-24328-910.1038/s41598-018-24328-9591687829695732Search in Google Scholar

Ogawa G, Ishida M, Urano N. Isolation and identification of dibutyl phthalate-degrading bacteria from hydrospheres in Tokyo. J Gen Appl Microbiol. 2009;55(4):261–265. https://doi.org/10.2323/jgam.55.261OgawaGIshidaMUranoN. Isolation and identification of dibutyl phthalate-degrading bacteria from hydrospheres in Tokyo. J Gen Appl Microbiol.2009;55(4):261265. https://doi.org/10.2323/jgam.55.26110.2323/jgam.55.26119700919Search in Google Scholar

Paz A, Carballo J, Pérez MJ, Diéguez SC, Domínguez JM. Microbial decoloration of dyes by Bacillus aryabhattai. N Biotechnol. 2016b May;33(3):421. https://doi.org/10.1016/j.nbt.2015.10.020PazACarballoJPérezMJDiéguezSCDomínguezJM. Microbial decoloration of dyes by Bacillus aryabhattai. N Biotechnol.2016bMay;33(3):421. https://doi.org/10.1016/j.nbt.2015.10.02010.1016/j.nbt.2015.10.020Search in Google Scholar

Paz A, Carballo J, Pérez MJ, Domínguez JM. Bacillus aryabhattai BA03: a novel approach to the production of natural value-added compounds. World J Microbiol Biotechnol. 2016a Oct;32(10):159. https://doi.org/10.1007/s11274-016-2113-5PazACarballoJPérezMJDomínguezJM. Bacillus aryabhattai BA03: a novel approach to the production of natural value-added compounds. World J Microbiol Biotechnol.2016aOct;32(10):159. https://doi.org/10.1007/s11274-016-2113-510.1007/s11274-016-2113-527562593Search in Google Scholar

Paz A, Outeiriño D, Domínguez JM. Fed-batch production of vanillin by Bacillus aryabhattai BA03. N Biotechnol. 2018 Jan 25;40 (Pt B):186–191. https://doi.org/10.1016/j.nbt.2017.07.012PazAOuteiriñoDDomínguezJM. Fed-batch production of vanillin by Bacillus aryabhattai BA03. N Biotechnol.2018Jan25;40 (Pt B):186191. https://doi.org/10.1016/j.nbt.2017.07.01210.1016/j.nbt.2017.07.01228803126Search in Google Scholar

Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, et al. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014 May 16;344(6185):1246843. https://doi.org/10.1126/science.1246843RagauskasAJBeckhamGTBiddyMJChandraRChenFDavisMFDavisonBHDixonRAGilnaPKellerM. Lignin valorization: improving lignin processing in the biorefinery. Science.2014May16;344(6185):1246843. https://doi.org/10.1126/science.124684310.1126/science.124684324833396Search in Google Scholar

Shivaji S, Chaturvedi P, Begum Z, Pindi PK, Manorama R, Padmanaban DA, Shouche YS, Pawar S, Vaishampayan P, Dutt CBS, et al. Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. Int J Syst Evol Microbiol. 2009 Dec 01;59(12):2977–2986. https://doi.org/10.1099/ijs.0.002527-0ShivajiSChaturvediPBegumZPindiPKManoramaRPadmanabanDAShoucheYSPawarSVaishampayanPDuttCBS. Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. Int J Syst Evol Microbiol.2009Dec01;59(12):29772986. https://doi.org/10.1099/ijs.0.002527-010.1099/ijs.0.002527-019643890Search in Google Scholar

Sonoki T, Masai E, Sato K, Kajita S, Katayama Y. Methoxyl groups of lignin are essential carbon donors in C1 metabolism of Sphingobium sp. SYK-6. J Basic Microbiol. 2009 Sep;49(S1) Suppl 1:S98–S102. https://doi.org/10.1002/jobm.200800367SonokiTMasaiESatoKKajitaSKatayamaY. Methoxyl groups of lignin are essential carbon donors in C1 metabolism of Sphingobium sp. SYK-6. J Basic Microbiol.2009Sep;49(S1) Suppl 1:S98S102. https://doi.org/10.1002/jobm.20080036710.1002/jobm.20080036719718680Search in Google Scholar

Sonoki T, Otsuka Y, Ikeda S, Masai E, Kajita S, Katayama Y. Close association between the enzymes involved in the lignin metabolic pathway of Sphingomonas paucimobilis SYK-6: interaction of O-demethylase (LigX) and ring fission dioxygenase (LigZ). J Wood Sci. 2002;48:250–252. https://doi.org/10.1007/BF00771377SonokiTOtsukaYIkedaSMasaiEKajitaSKatayamaY. Close association between the enzymes involved in the lignin metabolic pathway of Sphingomonas paucimobilis SYK-6: interaction of O-demethylase (LigX) and ring fission dioxygenase (LigZ). J Wood Sci.2002;48:250252. https://doi.org/10.1007/BF0077137710.1007/BF00771377Search in Google Scholar

Vandana T. Scouting of enzymes involved in the degradation of cellulosic material from native organism. Mysuru (India): CSIR – Central Food Technological Research Institute; 2009.VandanaT. Scouting of enzymes involved in the degradation of cellulosic material from native organism. Mysuru (India): CSIR – Central Food Technological Research Institute; 2009.Search in Google Scholar

Xu G, Li F, Wang Q. Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China. Sci Total Environ. 2008 Apr; 393(2–3):333–340. https://doi.org/10.1016/j.scitotenv.2008.01.001XuGLiFWangQ. Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China. Sci Total Environ.2008Apr; 393(2–3):333340. https://doi.org/10.1016/j.scitotenv.2008.01.00110.1016/j.scitotenv.2008.01.00118258283Search in Google Scholar

Xu R, Zhang K, Liu P, Han H, Zhao S, Kakade A, Khan A, Du D, Li X. Lignin depolymerization and utilization by bacteria. Bioresour Technol. 2018 Dec;269:557–566. https://doi.org/10.1016/j.biortech.2018.08.118XuRZhangKLiuPHanHZhaoSKakadeAKhanADuDLiX. Lignin depolymerization and utilization by bacteria. Bioresour Technol.2018Dec;269:557566. https://doi.org/10.1016/j.biortech.2018.08.11810.1016/j.biortech.2018.08.11830219494Search in Google Scholar

Yang CX, Wang T, Gao LN, Yin HJ, Lü X. Isolation, identification and characterization of lignin-degrading bacteria from Qinling, China. J Appl Microbiol. 2017 Dec;123(6):1447–1460. https://doi.org/10.1111/jam.13562YangCXWangTGaoLNYinHJX. Isolation, identification and characterization of lignin-degrading bacteria from Qinling, China. J Appl Microbiol.2017Dec;123(6):14471460. https://doi.org/10.1111/jam.1356210.1111/jam.1356228801977Search in Google Scholar

Yi X, Xiang O, Rong J, Zhu Y, Qingfang X. Research progress in application of Bacillus aryabhattai. Biotechnol. 2018;28(3):302–306.YiXXiangORongJZhuYQingfangX. Research progress in application of Bacillus aryabhattai. Biotechnol.2018;28(3):302306.Search in Google Scholar

Yu XQ, Belhaj A, Elmerich C, Lin M. Diversity of degradation pathways of some aromatic compounds by phenotype and genotype testing in Acinetobacter strains. World J Microbiol Biotechnol. 2004;20(6):623–627. https://doi.org/10.1023/B:WIBI.0000043184.30420.20YuXQBelhajAElmerichCLinM. Diversity of degradation pathways of some aromatic compounds by phenotype and genotype testing in Acinetobacter strains. World J Microbiol Biotechnol.2004;20(6):623627. https://doi.org/10.1023/B:WIBI.0000043184.30420.2010.1023/B:WIBI.0000043184.30420.20Search in Google Scholar

Zainith S, Purchase D, Saratale GD, Ferreira LFR, Bilal M, Bharagava RN. Isolation and characterization of lignin-degrading bacterium Bacillus aryabhattai from pulp and paper mill wastewater and evaluation of its lignin-degrading potential. 3 Biotech. 2019;9(3):92.ZainithSPurchaseDSarataleGDFerreiraLFRBilalMBharagavaRN. Isolation and characterization of lignin-degrading bacterium Bacillus aryabhattai from pulp and paper mill wastewater and evaluation of its lignin-degrading potential. 3 Biotech.2019;9(3):92.10.1007/s13205-019-1631-x638506830800603Search in Google Scholar

Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM. The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev. 2010 Jun 09;110(6):3552–3599. https://doi.org/10.1021/cr900354uZakzeskiJBruijnincxPCAJongeriusALWeckhuysenBM. The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev.2010Jun09;110(6):35523599. https://doi.org/10.1021/cr900354u10.1021/cr900354u20218547Search in Google Scholar

Zhou H, Guo W, Xu B, Teng Z, Tao D, Lou Y, Gao Y. Screening and identification of lignin-degrading bacteria in termite gut and the construction of LiP-expressing recombinant Lactococcus lactis. Microb Pathog. 2017;112:63–69.ZhouHGuoWXuBTengZTaoDLouYGaoY. Screening and identification of lignin-degrading bacteria in termite gut and the construction of LiP-expressing recombinant Lactococcus lactis. Microb Pathog.2017;112:6369.10.1016/j.micpath.2017.09.04728943150Search in Google Scholar

Zhu G, Lin M, Di F, Ning W, Ouyang X, Yong Q, Qiu X. Effect of benzyl functionality on microwave-assisted cleavage of Cα-Cβ bonds in lignin model compounds. J Phys Chem C. 2017;121(3):1537–1545. https://doi.org/10.1021/acs.jpcc.6b12056ZhuGLinMDiFNingWOuyangXYongQQiuX. Effect of benzyl functionality on microwave-assisted cleavage of Cα-Cβ bonds in lignin model compounds. J Phys Chem C.2017;121(3):15371545. https://doi.org/10.1021/acs.jpcc.6b1205610.1021/acs.jpcc.6b12056Search in Google Scholar

eISSN:
2544-4646
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology