Open Access

Problems of Calculating the Carbon Footprint in Scope 3 Using BIM

, ,  and   
Sep 20, 2024

Cite
Download Cover

Anquetin T., Coqueret G., Tavin B., Welgryn L. (2022). Scopes of carbon emissions and their impact on green portfolios. Economic Modelling, 115, 105951. Search in Google Scholar

Al-Obaidy M., Courard L., Attia S. (2022). A parametric approach to optimizing building construction systems and carbon footprint: A case study inspired by circularity principles. Sustainability, 14(6), 3370. Search in Google Scholar

Apollo M., Grzyl B. (2023). Aktualny stan wdrożenia BIM w polskich firmach budowlanych. Materiały Budowlane, 606 (2), 28-31 (in Polish). Search in Google Scholar

Bahrami S., Atkin B., Landin A. (2019). Enabling the diffusion of sustainable product innovations in BIM library platforms. Journal of Innovation Management, 7(4), 106-130. Search in Google Scholar

bimobject, 2018. www.bimobject.com. [Online] URL: https://www.bimobject.com/pl/hansgrohe/product/04700005 [accessed on december 2023]. Search in Google Scholar

Borkowski A.S., Osińska N., Szymańska N. (2022). Analizy energetyczne w modelach BIM 6D. Materiały Budowlane, 8, 55 (in Polish). Search in Google Scholar

Borkowski A.S. (2023). A Literature Review of BIM Definitions: Narrow and Broad Views. Technologies, 11(6), 176. Search in Google Scholar

Deloitte 2023. www2.deloitte.com. [Online] URL: https://www2.deloitte.com/uk/en/focus/climate-change/zero-inon-scope-1-2-and-3-emissions.html [accessed on November 2023]. Search in Google Scholar

Dreijerink L.J.M., Paradies G.L. (2020). How to reduce individual environmental impact? A literature review into the effects and behavioral change potential of carbon footprint calculators. https://publications.tno.nl/publication/34637488/DtNct6/TNO-2020-P11148.pdf [accessed on Janurary 2024]. Search in Google Scholar

Gallego-Schmid A., Chen H.M., Sharmina M., Mendoza J.M.F. (2020). Links between circular economy and climate change mitigation in the built environment. Journal of Cleaner Production, 260, 121115. Search in Google Scholar

Gilewski P., Pierzchalski M., Węglarz A. (2023). Wymagania prawne wybranych krajów europejskich dotyczące obliczania śladu węglowego budynków. Budownictwo i Prawo, 26(2), 3-7. Search in Google Scholar

Huang L., Krigsvoll G., Johansen F., Liu Y., Zhang X. (2018). Carbon emission of global construction sector. Renewable and Sustainable Energy Reviews, 81, 1906-1916. Search in Google Scholar

Idźkowski F. i in. (2021). W poszukiwaniu wspólnego systemu klasyfikacyjnego dla procesów budowlanych. Przewodnik Projektanta, 4/2021, s. 44. (in Polish). Search in Google Scholar

Kulczycka J., Wernicka M. (2015). Metody i wyniki obliczania śladu węglowego działalności wybranych podmiotów branży energetycznej i wydobywczej. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, (89), 133-142 (in Polish). Search in Google Scholar

LCA, O.C. (2023). One Click LCA. [Online] URL: https://www.oneclicklca.com/ [accesed on November 2023]. Search in Google Scholar

Liias R. i in. (2021). CCI-EE CLASSIFICATION SYSTEM: ESSENCE AND USE, Tallinn: Tallinn University of Technology. Search in Google Scholar

Łasut P., Kulczycka J. (2014). Metody i programy obliczające ślad węglowy. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, (87), 137-147 (in Polish). Search in Google Scholar

Maduta C., Melica G., D’Agostino D., Bertoldi P. (2022). Towards a decarbonised building stock by 2050: The meaning and the role of zero emission buildings (ZEBs) in Europe. Energy Strategy Reviews, 44, 101009. Search in Google Scholar

Meinrenken C.J., Chen D., Esparza R.A., Iyer V., Paridis S.P., Prasad A., Whillas E. (2022). The Carbon Catalogue, carbon footprints of 866 commercial products from 8 industry sectors and 5 continents. Scientific Data, 9(1), 87. Search in Google Scholar

Pawar B.S., Kanade G.N. (2018). Energy optimization of building using design builder software. International Journal of New Technology and Research, 4(1), 263152. Search in Google Scholar

Pandey D., Agrawal M., Pandey J.S. (2011). Carbon footprint: current methods of estimation. Environmental monitoring and assessment, 178, 135-160. Search in Google Scholar

Ruszkowski P. (2022). Ślad węglowy w świadomości społecznej. Energetyka – Społeczeństwo – Polityka. 10/2022, s. 43 (in Polish). Search in Google Scholar

Schumacher R., Theißen S., Höper J., Drzymalla J., Lambertz M., Hollberg A., ... Meins-Becker A. (2022). Analysis of current practice and future potentials of LCA in a BIM-based design process in Germany. In E3S Web of Conferences (Vol. 349, p. 10004). EDP Sciences. Search in Google Scholar

Sweco A. (2023). Sweco. [Online] URL: https://www.sweco.pl/aktualnosci/blog/jak-potezny-jest-slad-weglowybudownictwa/ (accessed on December 2023). Search in Google Scholar

Wcisło-Karczewska K. (2023). Obowiązki w zakresie śladu węglowego. RP Nieruchomości (accessed on November 2023) (in Polish). Search in Google Scholar

Webber C.L., Matthews H.S. i Huang Y.A. (2009). Calculating the carbon footprint of scope three using BIM. Environmental Science i Technology, 43(22), 8471-8702. Search in Google Scholar

Zima K., Przesmycka A. (2021). Koncepcja zintegrowanej analizy kosztów i generowanego śladu węglowego w cyklu życia budynku. Przegląd Budowlany, 92(10), 42-48 (in Polish). Search in Google Scholar