[
Adedibu P.A., 2023. Ecological problems of agriculture: impacts and sustainable solutions. ScienceOpen Preprints, doi: 10.14293/pr2199.000145.v1.
]Search in Google Scholar
[
Ajeng A.A., Abdullah R., Ling T.C., 2023. Biochar-Bacillus consortium for a sustainable agriculture: physicochemical and soil stability analyses. Biochar, 5(1), 17, doi: 10.1007/s42773-023-00215-z.
]Search in Google Scholar
[
Allohverdi T., Mohanty A.K., Roy P., Misra M., 2021. A review on current status of biochar uses in agriculture. Molecules, 26(18), 5584, https://doi.org/10.3390/molecules26185584.
]Search in Google Scholar
[
Almaraz M., Wong M.Y., Geoghegan E.K., Houlton B.Z., 2021. A review of carbon farming impacts on nitrogen cycling, retention, and loss. Annals of the New York Academy of Sciences, 1505(1): 102-117, doi: 10.1111/NYAS.14690.
]Search in Google Scholar
[
Anioł A., 2010. Wpływ biotechnologii i procesów globalizacji w gospodarce na hodowlę roślin i wspierające ten sektor badania naukowe. Biuletyn IHAR, 256: 3-13.
]Search in Google Scholar
[
Aziz T., Maqsood M.A., Kanwal S., Hussain S., Ahmad H.R., Sabir M., 2015. Fertilizers and environment: issues and challenges. pp. 575-598. In: Crop production and global environmental issues, doi: 10.1007/978-3-319-23162-4_21.
]Search in Google Scholar
[
Banu M.R., Rani B., Kavya S.R., Nihala Jabin P.P., 2023. Bio-char: A black carbon for sustainable agriculture. International Journal of Environment and Climate Change, 13(6): 418-432, doi: 10.9734/ijecc/2023/v13i61840.
]Search in Google Scholar
[
Bashir M., Bhat M.A., Sharma S., Rana N., Fayaz S. et al., 2022. Efficient nutrient management in field crops for food and environmental safety. Plant Cell Biotechnology and Molecular Biology, 23(39&40): 58-67, doi: 10.56557/pcbmb/2022/v23i39-408030.
]Search in Google Scholar
[
Bassey E. E., Oko O. V., 2023. Biochar: a mechanism of soil ammendment for agricultural productivity. Global Journal of Agricultural Sciences, 22(1): 147-152, doi: 10.4314/gjass. v22i1.7.
]Search in Google Scholar
[
Baumber A., Waters C., Cross R., Metternicht G., Simpson M., 2020. Carbon farming for resilient rangelands: people, paddocks and policy. The Rangeland Journal, 42(5): 293-307, doi: 10.1071/RJ20034.
]Search in Google Scholar
[
Beesley L., Moreno-Jamirez E., Gomez-Eyles J.L., Harris E., Robinson B., Sizmur T., 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159(12): 3269-3282, doi: 10.1016/j.envpol.2011.07.023.
]Search in Google Scholar
[
Bis Z., 2012. Biowęgiel – powrót do przeszłości, szansa dla przyszłości. Czysta energia, 6: 28-31.
]Search in Google Scholar
[
Blanco-Canqui H., 2017. Biochar and soil physical properties. Soil Science Society of America Journal, 81(4): 687-711, https://doi.org/10.2136/sssaj2017.01.0017.
]Search in Google Scholar
[
Brichi L., Fernandes J.V., Silva B.M., Vizú J.D.F., Junior J.N., Cherubin M.R., 2023. Organic residues and their impact on soil health, crop production and sustainable agriculture: A review including bibliographic analysis. Soil Use and Management, 39(2): 686-706, doi: 10.1111/sum.12892.
]Search in Google Scholar
[
Bumbiere K., Sanchez F.A.D., Pubule J., Blumberga D., 2022. Development and assessment of carbon farming solutions. Environmental and Climate Technologies, 26(1): 898-916, https://doi.org/10.2478/rtuect-2022-0068.
]Search in Google Scholar
[
Chang B.P., Mohanty A.K., Misra M., 2020. Studies on durability of sustainable biobased composites: a review. RSC Advances, 10(31): 17955-17999, https://doi.org/10.1039/c9ra09554c.
]Search in Google Scholar
[
Chen J., Sun X., Li L., Liu X., Zhang B., et al., 2016. Change in active microbial community structure, abundance and carbon cycling in an acid rice paddy soil with the addition of biochar. European Journal of Soil Science, 67(6): 857-867, https://doi.org/10.1111/ejss.12388.
]Search in Google Scholar
[
Chen X., Qin X., Li Y., Wan Y., Liao Y., et al., 2022. Residential and agricultural soils dominate soil organic matter loss in a typical agricultural watershed of subtropical China. Agriculture, Ecosystems & Environment, 338, 108100, doi: 10.1016/j. agee.2022.108100.
]Search in Google Scholar
[
Cheng S., Chen T., Xu W., Huang J., Jiang S., & Yan B., 2020. Application research of biochar for the remediation of soil heavy metals contamination: a review. Molecules, 25(14): 3167. https://doi.org/10.3390/molecules25143167
]Search in Google Scholar
[
Ciećko Z., Wyszkowski M., Krajewski W., Zabielska J., 2001. Effect of organic matter and liming on the reduction of cadmium uptake from soil by triticale and spring oilseed rape. The Science of the Total Environment, 281: 37-45.
]Search in Google Scholar
[
Cornelissen G., Martinsen V., Shitumbanuma V., Alling V., Breedveld G.D., Rutherford D.W., et al., 2013. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agronomy, 3(2): 256-274, https://doi.org/10.3390/agronomy3020256.
]Search in Google Scholar
[
Czekała W., Jasiński T., Grzelak M., Witaszek K., Dach J., 2022. Biogas plant operation: digestate as the valuable product. Energies, 15(21), 8275, https://doi.org/10.3390/en15218275.
]Search in Google Scholar
[
Deng Z., Ma P., Xiang P., 2023. The mechanism of Pb (II) and Cd (II) removal by coffee grounds biochar: Role of KOH modification. https://doi.org/10.21203/rs.3.rs-2863675/v1
]Search in Google Scholar
[
Dewi W.S., Nurhutami S.R., 2023. Carbon farming in paddy soil to increase soil c and soil health as an implementation of soil carbon 4 per mille. IOP Conference Series: Earth and Environmental Science, 1165(1), 012023, https://doi.org/10.1088/1755-1315/1165/1/012023.
]Search in Google Scholar
[
Dey D., Sarangi D., Mondal P., 2023. Biochar: porous carbon material, its role to maintain sustainable environment. pp. 595-621. In: Handbook of Porous Carbon Materials; Singapore: Springer Nature Singapore, doi: 10.1007/978-981-19-7188-4_22.
]Search in Google Scholar
[
Dias B.O., Silva C.A., Higashikawa F.S., Roig A., Sanchez-Monedero M.A., 2010. Use of biochar as bulking agent for the composting of poultry manure: Effect on organic matter degradation and humification. Bioresource Technology, 101: 1239-1246, https://doi.org/10.1016/j.biortech.2009.09.024.
]Search in Google Scholar
[
Dimobe K., Tondoh J.E., Weber J.C., Bayala J., Ouédraogo K., Greenough K.M., 2018. Farmers’ preferred tree species and their potential carbon stocks in southern Burkina Faso: implications for biocarbon initiatives. Plos One, 13(12), e0199488, https://doi.org/10.1371/journal.pone.0199488.
]Search in Google Scholar
[
EC (European Commission). The European Green Deal COM/2019/640; European Commission: Brussels, Belgium, 2019
]Search in Google Scholar
[
Fischer D., Glaser B., 2012. Synergisms between Compost and Biochar for Sustainable Soil Amelioration. Management of Organic Waste, Dr. Sunil Kumar (Ed.), ISBN: 978-953-307-925-7, InTech, 167-198. DOI: 10.5772/31200
]Search in Google Scholar
[
Gebremedhin G.H., Halieselassie B., Berhe D., Belay T., 2015. Effect of biochar on yield and yield components of wheat and post-harvest soil properties in Tigray, Ethiopia. Journal of Fertilizer & Pesticides, 6: 1-4.
]Search in Google Scholar
[
Gerlach A., Schmidt H.P., 2014. The use of biochar in cattle farming. The Biochar journal 2014, Arbaz, Switzerland ISSN 2297-1114; available online: https://www.biochar-journal.org/en/ct/9 (accessed on 20.11.2023).
]Search in Google Scholar
[
Gładki J., 2017. Biochar as a chance for sustainable development. On the basis of the work and own research of FLUID. Second edition - revised and enlarged. Oficyna Poligraficzna Apla, ISBN 978-83-65487-01-8, available in Internet.
]Search in Google Scholar
[
Gokul A., Mabaso J., Henema N., Otomo L., Bakare O.O., et al., 2023. Sustainable agriculture through the enhancement of microbial biocontrol agents: Current challenges and new perspectives. Applied Sciences, 13(11), 6507, doi: 10.3390/app13116507.
]Search in Google Scholar
[
Graber E.R., Harel Y.M., Kolton M., Cytryn E., Silber A., et al., 2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 337: 481-496, doi: 10.1007/s11104-010-0544-6.
]Search in Google Scholar
[
Grimblatt V., 2021. The challenge of agriculture: increase the productivity in a sustainable way. pp. 01-06. In: 2021 Forum on specification & Design Languages (FDL); IEEE, doi: 10.1109/FDL53530.2021.9568381.
]Search in Google Scholar
[
Guo J., Su G., Zhang J., Wang G., 2008. Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi – arid land condition. African Journal of Biotechnology, 7: 1829-1838.
]Search in Google Scholar
[
Haider G., Joseph S., Steffens D., Müller C., Taherymoosavi S., et al., 2020. Mineral nitrogen captured in field-aged biochar is plant-available. Scientific Reports, 10(1), Article number: 13816, https://doi.org/10.1038/s41598-020-70586-x.
]Search in Google Scholar
[
Hamidzadeh Z., Ghorbannezhad P., Ketabchi M.R., Yeganeh B., 2023. Biomass-derived biochar and its application in agriculture. Fuel, 341, 127701, doi: 10.1016/j.fuel.2023.127701.
]Search in Google Scholar
[
Holzleitner C., Gawlik T., 2022. Carbon farming in the EU. Food Science and Technology, 36(1): 36-39.
]Search in Google Scholar
[
Hönle S., Heidecke C., 2023. Status and current considerations on carbon farming in selected European countries (No. EGU23-17445). Copernicus Meetings, doi: 10.5194/egusphereegu23-17445.
]Search in Google Scholar
[
Hossain M.K., Strezov V., Chan K.Y., Ziolkowski A., Nelson P.F., 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar, Journal of Environmental Management, 92: 223-228. .
]Search in Google Scholar
[
Hussain R., Ravi K., 2022. Investigating soil properties and vegetation parameters in different biochar-amended vegetated soil at large suction for application in bioengineered structures. Scientific Reports, 12, Article number: 21261, https://doi.org/10.1038/s41598-02.
]Search in Google Scholar
[
Ibarrola R., Shackely S., Hammond J., 2012. Pyrolysis biochar systems for recovering biodegradable materials: a life cycle carbon assessment. Waste Management. 32: 859-868.
]Search in Google Scholar
[
Igliński B., Buczkowski R., Cichosz M., 2009. Technologie bioenergetyczne. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń.
]Search in Google Scholar
[
International Biochar Initiative (IBI), 2015. http://www.biochar-international.org/biochar.
]Search in Google Scholar
[
Jakubiak M., Kordylewski W., 2010. Toryfikacja biomasy. Archiwum spalania PIS, 10(1-2): 1-9.
]Search in Google Scholar
[
Jaworski J., 2012. Biowęgiel. Kontekst ponownego ‘odkrycia’ zastosowania węgla drzewnego w agrokulturze oraz jego potencjalne znaczenie odnośnie kryzysów globalnych, a także ruch społeczny z tym związany. (przedsiębiorstwa, organizacje, konferencje, źródła informacji online) http://www.sibg.org.pl/UserFiles/File/opracowanie%20biowegiel%20kontekst%20znaczenie%20ruch%20spoleczny.pdf (accessed 09.05.2012).
]Search in Google Scholar
[
Jeffery S., Ábalos D., Prodana M., Bastos A.C., GroenigenJ.W., Hungate B.A., Verheijen F., 2017. Biochar boosts tropical but not temperate crop yields. Environmental Research Letters, 12(5), 053001. https://doi.org/10.1088/1748-9326/aa67bd
]Search in Google Scholar
[
Jolánkai M., Birkás M., Tarnawa Á., Kassai K.M., 2019. Agriculture and climate change. International Climate Protection, pp. 65-71, doi: 10.1007/978-3-030-03816-8_10.
]Search in Google Scholar
[
Jones D.L., Rousk J., Edwards-Jones G., DeLuca T.H., Murphy D.V., 2012. Biochar mediated changes in soil quality and plant growth in three year field trial. Soil Biology and Biochemistry, 45: 113-124. .
]Search in Google Scholar
[
Kang M.S., Banga S.S., 2013. Global agriculture and climate change. Journal of Crop Improvement, 27(6): 667-692.
]Search in Google Scholar
[
Karhu K., Mattila T., Bergstrom I., Regina K., 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study. Agriculture, Ecosystems and Environmental, 140: 309-313.
]Search in Google Scholar
[
Karki T., Gyawaly P., 2021. Conservation agriculture mitigates the effects of climate change. Journal of Nepal Agricultural Research Council, 7: 122-132, https://doi.org/10.3126/jnarc.v7i1.36934.
]Search in Google Scholar
[
Keutgen A.J., 2023. Climate change: challenges and limitations in agriculture. In: IOP Conference Series: Earth and Environmental Science (Vol. 1183, No. 1, p. 012069). IOP Publishing, doi: 10.1088/1755-1315/1183/1/012069.
]Search in Google Scholar
[
Khakimov P., Aliev J., Thomas T., Ilyasov J., Dunston S,. 2020. Climate change effects on agriculture and food security in Tajikistan. Silk Road a Journal of Eurasian Development, 2(1): 89-112, https://doi.org/10.16997/srjed.33.
]Search in Google Scholar
[
Kurth V.J., MacKenzie M.D., DeLuca T.H., 2006. Estimating charcoal content in forest mineral soils. Geoderma, 137(1-2): 135-139.,
]Search in Google Scholar
[
Kuś J., Krasowicz S., 2001. Przyrodniczo-organizacyjne uwarunkowania zrównoważonego rozwoju gospodarstw rolnych. Pamiętnik Puławski, 124: 273-288.
]Search in Google Scholar
[
Kutkowska B., 2007. Wdrażanie koncepcji zrównoważonego rozwoju rolnictwa i obszarów wiejskich w Sudetach. Studia i Monografie, 2. IRWiR PAN, Warszawa.
]Search in Google Scholar
[
Kwapinski W., Byrne C.M.P., Kryachko E., Wolfram P., Adley C., Leahy J.J., Novotny E.H., Hayes M.H.B., 2010. Biochar from biomass and waste. Waste Biomass Valorization, 1: 177-189.
]Search in Google Scholar
[
Kwiatkowska-Malina J., Maciejewska A., 2009. Wpływ materii organicznej na pobieranie metali ciężkich przez rzodkiewkę i facelię. Ochrona Środowiska i Zasobów Naturalnych, 40: 217-223.
]Search in Google Scholar
[
Ladha J., Pathak H., Krupnik T., Six J., van Kessel C., 2005. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Advances in Agronomy, 87: 85-156, https://doi.org/10.1016/S0065-2113(05)87003-8.
]Search in Google Scholar
[
Lehmann J., 2007. Bio-energy in the black. Frontiers in Ecology and Environment, 5(7): 381-387, https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2.
]Search in Google Scholar
[
Lehmann J., Joseph S., 2009. Biochar for Environmental Management: Science and Technology, Earthscan, London & Sterling, VA. 416 pp.
]Search in Google Scholar
[
Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W.C., Crowley D., 2011. Biochar effects on soil biota – a review. Soil Biology and Biochemistry, 43(9): 1812-1836, doi: 10.1016/j.soilbio.2011.04.022.
]Search in Google Scholar
[
Leifeld J., 2023. Carbon farming: Climate change mitigation via non-permanent carbon sinks. Journal of Environmental Management, doi: 10.1016/j.jenvman.2023.117893.
]Search in Google Scholar
[
Maćkowiak C., 1998. Straw as a fertilizer on a no-inventory farm. Wieś Jutra, 5: 46-48. (in Polish)
]Search in Google Scholar
[
Major J., Rondon M., Molina D., Riha S.J., Lehmann J., 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 333: 117-128.
]Search in Google Scholar
[
Malińska K., 2012. Biocarbon as the answer to current environmental problems. Inżynieria i Ochrona Środowiska, 15(4): 387-403. (in Polish)
]Search in Google Scholar
[
Malińska K., Dach J., 2014. Możliwości wykorzystania biowęgla w procesie kompostowania. Inżynieria i Ochrona Środowiska, 36: 28-39, doi: https://doi.org/10.12912/2081139X.03.
]Search in Google Scholar
[
Malisa M.N., Hamdan J., Husni M.H.A., 2011. Yield response of kenaf (Hibiscus cannabinus L.) to different rates of charcoal and nitrogen fertilizer on bris soils in Malaysia. Middle-East Journal of Scientific Research, 10(1): 54-59.
]Search in Google Scholar
[
Masciandaro G., Macci C., Peruzzi E., Doni S., 2018. Soil carbon in the world: ecosystem services linked to soil carbon in forest and agricultural soils. pp. 1-38. In: The future of soil carbon. Academic Press, doi: 10.1016/B978-0-12-811687-6.00001-8.
]Search in Google Scholar
[
McKeown A.W., Warland J., McDonald M.R., 2006. Long-term climate and weather patterns in relation to crop yield: a minireviev. Canadian Journal of Botany, 84(7): 1031-1037.
]Search in Google Scholar
[
Mehraj S., Manzoor M.M.M., Sharma R.K., Mir A.H., Khan I.L., Maqbool S., 2022. Climate change and agriculture. pp. 231-239. In: Environmental Studies and Climate Change. CRC Press, doi: 10.1201/9781003220824-17.
]Search in Google Scholar
[
Mukherjee A., Lal R., 2013. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy, 3(2): 313-339, https://doi.org/10.3390/agronomy3020313.
]Search in Google Scholar
[
Murtaza G., Ahmed Z., Eldin S.M., Ali B., Bawazeer S., et al., 2023. Biochar-Soil-Plant interactions: A cross talk for sustainable agriculture under changing climate. Frontiers in Environmental Science, 11, 1059449, doi: 10.3389/fenvs.2023.1059449.
]Search in Google Scholar
[
Mussa K., Saria J., Kusiluka L., Jiwaji N., Gwambene B., et al., 2015. Eliciting smallholder farmers’ tradeoffs and preferences on the attributes of climate smart agriculture in the breadbasket areas of Tanzania using a conjoint experiment method. International Journal of Environmental Protection and Policy, 3(6), 188, https://doi.org/10.11648/j.ijepp.20150306.12.
]Search in Google Scholar
[
Nigussie A., Kissi E., Misganaw M., Ambaw G., 2012. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. American-Eurasian Journal of Agricultural and Environmental Sciences, 12(3): 369-376.
]Search in Google Scholar
[
Nikitin A.V., Klimentova E.A., Dubovitski A.A., Kastornov N.P., Rogov M.A., Sukhareva T.N., 2022. Adaptive management of climate risk in agricutual enterprises. European Proceedings of Social and Behavioural Sciences, https://doi.org/10.15405/epsbs.2022.02.53.
]Search in Google Scholar
[
Nogues I., Miritana V.M., Passatore L., Zacchini M., Peruzzi E., et al., 2023. Biochar soil amendment as carbon farming practice in a Mediterranean environment. Geoderma Regional, doi: 10.1016/j.geodrs.2023.e00634.
]Search in Google Scholar
[
Olarieta J.R., Padrò R., Masip G., Rodríguez-Ochoa R., Tello E., 2011. ‘Formiguers’, a historical system of soil fertilization (and biochar production?). Agriculture, ecosystems & environment, 140(1-2): 27-33, https://doi.org/10.1016/j.agee.2010.11.008.
]Search in Google Scholar
[
Palansooriya K.N., Wong J.T.F., Hashimoto Y., Huang L., Rinklebe J., et al., 2019. Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1(1): 3-22, https://doi.org/10.1007/s42773-019-00009-2.
]Search in Google Scholar
[
Patil J., Pawar A., Chaudhari Y.A., Yadav R.K., 2020. Utilization of microbes for sustainable agriculture: review. International Journal of Microbial Science, 1(1): 58-63, https://doi.org/10.55347/theijms.v1i1.9.
]Search in Google Scholar
[
Quosai P., Anstey A., Mohanty A.K., Misra M. 2018. Characterization of biocarbon generated by high- and low-temperature pyrolysis of soy hills and coffee chaff: for polymer composite applications. Royal Society Open Science, 5: 171970. http://doi.org/10.1098/rsos.171970
]Search in Google Scholar
[
Rana A., Sindhu M., Kumar A., Dhaka R.K., Chahar M., et al., 2021. Restoration of heavy metal-contaminated soil and water through biosorbents: a review of current understanding and future challenges. Physiologia Plantarum, https://doi.org/10.1111/ppl.13397.
]Search in Google Scholar
[
Read P., 2009. This gift of nature is the best way to save us from climate catastrophe. The Guardian, Mar 27; Commentis free/biochar.
]Search in Google Scholar
[
Rehmaan I.U., Jan B., Khan N.F., Islam T., Rehman S., et al., 2022. Nitrogen Biofertilizers. Role in Sustainable Agriculture (Chapter 13). In: Advances in Plant Nitrogen Metabolism; eds: Yousuf P.Y., Shabir P.A., Hakeem K.R., doi: 10.1201/9781003248361-13.
]Search in Google Scholar
[
Robertson G.F., Harwood R., 2001. Agriculture, sustainable. Encyclopedia of Biodiversity, National Academy Press, Washington, DC, I: 99-108.
]Search in Google Scholar
[
Rodrigues L., Budai A., Elsgaard L., Hardy B., Keel S.G., et al., 2023. The importance of biochar quality and pyrolysis yield for soil carbon sequestration in practice. European Journal of Soil Science, 74(4), e13396, doi: 10.1111/ejss.13396.
]Search in Google Scholar
[
Rukhsana, Alam A., 2022. Agriculture, Environment and Sustainable Development: An Overview. Agriculture, Environment and Sustainable Development: Experiences and Case Studies, 3-9, doi: 10.1007/978-3-031-10406-0_1.
]Search in Google Scholar
[
Samruthi M., Kannan V., Bharathi A., 2020. Carbon farming: A pragmatic approach to tackle greenhouse gas emission. Journal of Pharmacognosy and Phytochemistry, 9(5): 222-225.
]Search in Google Scholar
[
Sanchez M.E., Lindao E., Margaleff D., Martinez O., Moran A., 2009. Pyrolysis of agricultural residues from rape and sunflower: production and characterization of bio-fuels and biochar soil management. Journal of Analytical and Applied Pyrolysis, 85: 142-144.
]Search in Google Scholar
[
Sandhu S.S., Sekaran U., Ozlu E., Hoilett N., Kumar S., 2019. Short-term impacts of biochar and manure application on soil labile carbon fractions, enzyme activity, and microbial community structure. Biochar, 1(3): 271-282, https://doi.org/10.1007/s42773-019-00025-2.
]Search in Google Scholar
[
Sapek B., 2010. Uwalnianie azotu i fosforu z materii organicznej gleby. Woda-Środowisko-Obszary Wiejskie, 10, 3(31): 229-256.
]Search in Google Scholar
[
Sardiñas H.S., Ryals R., Williams N.M., 2022. Carbon farming can enhance pollinator resources: Carbon farming can help protect bees and other wild pollinators that are essential to California agriculture. California Agriculture, 76(4), doi: 10.3733/ca.2022a0014.
]Search in Google Scholar
[
Sharma M., Kaushal R., Kaushik P., Ramakrishna S., 2021. Carbon farming: Prospects and challenges. Sustainability, 13(19), 11122, doi: 10.3390/SU131911122.
]Search in Google Scholar
[
Shell K.M., Vohra S.Y., Rodene D., Gupta R.B., 2021. Phytore-mediation of nickel via water hyacinth for biocarbon-derived supercapacitor applications. Energy Technology, 9(8), https://doi.org/10.1002/ente.202100130.
]Search in Google Scholar
[
Sienkiewicz S., Krzebietke S., Panak H., Czapla J., 2005. Yields of spring barley and spring wheat depending on fertilization in long-term field experiment. Fragmenta Agronomica, (XXII) nr 1(85): 244-253. (in Polish + summary in English)
]Search in Google Scholar
[
Singh M., 2023. Engineered biochar-based nanocomposites: a sustainable solution for smart agriculture. pp. 119-131. In: Biochar-Based Nanocomposites for Contaminant Management: Synthesis, Contaminants Removal, and Environmental Sustainability. Cham: Springer International Publishing, doi: 10.1007/978-3-031-28873-9_10.
]Search in Google Scholar
[
Sinha S., Singh R.S., Kumar P., Kishore C., Singh P.K., 2018. Agriculture and climate change. Journal of Pharmacognosy and Phytochemistry, 7(1S): 86-90.
]Search in Google Scholar
[
Smit B., van der Kolk J., 2023. Carbon farming schemes throughout Europe, an overall inventory and analysis (No. EGU23-16595). Copernicus Meetings, doi: 10.5194/egusphereegu23-16595.
]Search in Google Scholar
[
Smith P., Olesen J., 2010. Synergies between the mitigation of, and adaptation to, climate change in agriculture. The Journal of Agricultural Science, 148(5): 543-552, https://doi.org/10.1017/s0021859610000341.
]Search in Google Scholar
[
Sohi S., Lopez-Capel E., Krull E., Bol R., 2009. Biochar, climate change and soil: A review to guide future research. CSIRO Land and Water Science Report 05/09, 57 pp.
]Search in Google Scholar
[
Solaiman Z.M., Blackwell P., Abbott L.K., Storer P., 2010. Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Research, 48(7), 546, https://doi.org/10.1071/sr10002.
]Search in Google Scholar
[
Song W., Guo M., 2012. Quality variations of poultry litter bio-char generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94: 138-145.
]Search in Google Scholar
[
Sowa S., Linkiewicz A., 2007. Rośliny genetycznie zmodyfikowane. [In:] Organizmy genetycznie modyfikowane Wyd. Polskie Zrzeszenie Inżynierów i Techników Sanitarnych Oddział Wielkopolski, Poznań, ss: 37-42.
]Search in Google Scholar
[
Steiner C., Melear N., Harris K., Das K.C., 2011. Biochar as bulking agent for poultry litter composting. Carbon Management, 2(3): 227-230, https://doi.org/10.4155/cmt.11.15.
]Search in Google Scholar
[
Stępień P., Pulka J., Białowiec A., 2017. Organic waste torrefaction – a review: reactor systems, and the biochar properties. Pyrolysis, 37, https://doi.org/10.5772/67644.
]Search in Google Scholar
[
Szwejkowski Z., Dragońska E., Suchecki S., 2008. Forecast of influence of expected global warming in year 2050 on crop yielding in north-eastern Poland. Acta Agrophysica, 12(3): 791-800. (in Polish + summary in English)
]Search in Google Scholar
[
Tian Z., Wang J.W., Li J., Han B., 2021. Designing future crops: challenges and strategies for sustainable agriculture. The Plant Journal, 105(5): 1165-1178, doi: 10.1111/TPJ.15107.
]Search in Google Scholar
[
Topçu P., Yavuz Ö., Tolunay A., 2022. The importance of soil organic carbon in sustainable soil management. Turkish Journal of Forest Science, 6(2): 604-614, doi: 10.32328/turkjforsci.1039785.
]Search in Google Scholar
[
Tripathi N., Rodriguez-Uribe A., Weldekidan H., Misra M., Mohanty A.K., 2022. Upcycling of waste jute biomass to advanced biocarbon materials: the effect of pyrolysis temperature on their physicochemical and electrical properties. Materials Advances, 3(24): 9071-9082, https://doi.org/10.1039/d2ma00678b.
]Search in Google Scholar
[
Uzoma K.C., Inoue M., Andry N., Fujimaki H., Zahoor A., Nishihara E., 2011. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Mangement, 27(2): 205-212.
]Search in Google Scholar
[
Ventura M., Alberti G., Viger M., Jenkins J., Girardin C., Baronti S., 2014. Biochar mineralization and priming effect on som decomposition in two european short rotation coppices. GCB Bioenergy, 7(5):1150-1160. https://doi.org/10.1111/gcbb.12219
]Search in Google Scholar
[
Wang D., Mukome F., Yan D., Wang H., Scow K., & Parikh S., 2015. Phenylurea herbicide sorption to biochars and agricultural soil. Journal of Environmental Science and Health, Part B, 50(8): 544-551. https://doi.org/10.1080/03601234.2015.1028830
]Search in Google Scholar
[
Wang F., Martinez D., Huang J., 2023. Biocarbon-Driven Remediation of Oil Contaminated Soils. pp. 211-218. In: Geo-Congress, doi:10.1061/9780784484661.022.
]Search in Google Scholar
[
Wilkin J., 2003. Kierunki i uwarunkowania wykorzystania instrumentów Wspólnej Polityki Rolnej w odniesieniu do polskiego rolnictwa i obszarów wiejskich. Wieś i Rolnictwo, 1, Warszawa.
]Search in Google Scholar
[
Wilkin J. (ed.), 2010. Wielofunkcyjność rolnictwa: kierunki badań, podstawy metodologiczne i implikacje praktyczne. Instytut Rozwoju Wsi i Rolnictwa Polskiej Akademii Nauk, Warszawa, 228 pp., ISBN 83-89900-36-X, doi: 10.53098/9798389 900363.
]Search in Google Scholar
[
Wołoszyk C., Grześkowiak A., Jakubowski W., 2004. Selected issues of fertilizing management in Poland. Folia Universitatis Agriculturae Stetinensis, Agricultura, 98: 195-202
]Search in Google Scholar
[
Woolf D., 2008. Biochar as a soil amendment: A review of the environmental implications. Organic eprints, available online: https://orgprints.org/id/eprint/13268/1/Biochar_as_a_soil_amendment_-_a_review.pdf (accessed on: 25 11 2023).
]Search in Google Scholar
[
Wyzińska M., Smreczak B., 2019. Influence of type and rate of biochar on productivity of winter wheat. In Proceedings of the 2019International Conference “Engineering for Rural Development”, Jelgava, Latvia, 22–24 May 2019; pp. 594-599.
]Search in Google Scholar
[
Yadav A.N., Kour D., Kaur T., Devi R., Guleria G., et al., 2020. Microbial biotechnology for sustainable agriculture: current research and future challenges. New and Future Developments in Microbial Biotechnology and Bioengineering, pp. 331-344, doi: 10.1016/B978-0-12-820526-6.00020-8.
]Search in Google Scholar
[
Zulfiqar F., Moosa A., Nazir M.M., Ferrante A., Ashraf M., et al., 2022. Biochar: An emerging recipe for designing sustainable horticulture under climate change scenarios. Frontiers in Plant Science, 13, 1018646, doi: 10.3389/fpls.2022. 1018646.
]Search in Google Scholar