Accesso libero

Biochar usefulness in achieving goals of carbon farming and sustainable agricultural systems

,  e   
05 lug 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Adedibu P.A., 2023. Ecological problems of agriculture: impacts and sustainable solutions. ScienceOpen Preprints, doi: 10.14293/pr2199.000145.v1. Search in Google Scholar

Ajeng A.A., Abdullah R., Ling T.C., 2023. Biochar-Bacillus consortium for a sustainable agriculture: physicochemical and soil stability analyses. Biochar, 5(1), 17, doi: 10.1007/s42773-023-00215-z. Search in Google Scholar

Allohverdi T., Mohanty A.K., Roy P., Misra M., 2021. A review on current status of biochar uses in agriculture. Molecules, 26(18), 5584, https://doi.org/10.3390/molecules26185584. Search in Google Scholar

Almaraz M., Wong M.Y., Geoghegan E.K., Houlton B.Z., 2021. A review of carbon farming impacts on nitrogen cycling, retention, and loss. Annals of the New York Academy of Sciences, 1505(1): 102-117, doi: 10.1111/NYAS.14690. Search in Google Scholar

Anioł A., 2010. Wpływ biotechnologii i procesów globalizacji w gospodarce na hodowlę roślin i wspierające ten sektor badania naukowe. Biuletyn IHAR, 256: 3-13. Search in Google Scholar

Aziz T., Maqsood M.A., Kanwal S., Hussain S., Ahmad H.R., Sabir M., 2015. Fertilizers and environment: issues and challenges. pp. 575-598. In: Crop production and global environmental issues, doi: 10.1007/978-3-319-23162-4_21. Search in Google Scholar

Banu M.R., Rani B., Kavya S.R., Nihala Jabin P.P., 2023. Bio-char: A black carbon for sustainable agriculture. International Journal of Environment and Climate Change, 13(6): 418-432, doi: 10.9734/ijecc/2023/v13i61840. Search in Google Scholar

Bashir M., Bhat M.A., Sharma S., Rana N., Fayaz S. et al., 2022. Efficient nutrient management in field crops for food and environmental safety. Plant Cell Biotechnology and Molecular Biology, 23(39&40): 58-67, doi: 10.56557/pcbmb/2022/v23i39-408030. Search in Google Scholar

Bassey E. E., Oko O. V., 2023. Biochar: a mechanism of soil ammendment for agricultural productivity. Global Journal of Agricultural Sciences, 22(1): 147-152, doi: 10.4314/gjass. v22i1.7. Search in Google Scholar

Baumber A., Waters C., Cross R., Metternicht G., Simpson M., 2020. Carbon farming for resilient rangelands: people, paddocks and policy. The Rangeland Journal, 42(5): 293-307, doi: 10.1071/RJ20034. Search in Google Scholar

Beesley L., Moreno-Jamirez E., Gomez-Eyles J.L., Harris E., Robinson B., Sizmur T., 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159(12): 3269-3282, doi: 10.1016/j.envpol.2011.07.023. Search in Google Scholar

Bis Z., 2012. Biowęgiel – powrót do przeszłości, szansa dla przyszłości. Czysta energia, 6: 28-31. Search in Google Scholar

Blanco-Canqui H., 2017. Biochar and soil physical properties. Soil Science Society of America Journal, 81(4): 687-711, https://doi.org/10.2136/sssaj2017.01.0017. Search in Google Scholar

Brichi L., Fernandes J.V., Silva B.M., Vizú J.D.F., Junior J.N., Cherubin M.R., 2023. Organic residues and their impact on soil health, crop production and sustainable agriculture: A review including bibliographic analysis. Soil Use and Management, 39(2): 686-706, doi: 10.1111/sum.12892. Search in Google Scholar

Bumbiere K., Sanchez F.A.D., Pubule J., Blumberga D., 2022. Development and assessment of carbon farming solutions. Environmental and Climate Technologies, 26(1): 898-916, https://doi.org/10.2478/rtuect-2022-0068. Search in Google Scholar

Chang B.P., Mohanty A.K., Misra M., 2020. Studies on durability of sustainable biobased composites: a review. RSC Advances, 10(31): 17955-17999, https://doi.org/10.1039/c9ra09554c. Search in Google Scholar

Chen J., Sun X., Li L., Liu X., Zhang B., et al., 2016. Change in active microbial community structure, abundance and carbon cycling in an acid rice paddy soil with the addition of biochar. European Journal of Soil Science, 67(6): 857-867, https://doi.org/10.1111/ejss.12388. Search in Google Scholar

Chen X., Qin X., Li Y., Wan Y., Liao Y., et al., 2022. Residential and agricultural soils dominate soil organic matter loss in a typical agricultural watershed of subtropical China. Agriculture, Ecosystems & Environment, 338, 108100, doi: 10.1016/j. agee.2022.108100. Search in Google Scholar

Cheng S., Chen T., Xu W., Huang J., Jiang S., & Yan B., 2020. Application research of biochar for the remediation of soil heavy metals contamination: a review. Molecules, 25(14): 3167. https://doi.org/10.3390/molecules25143167 Search in Google Scholar

Ciećko Z., Wyszkowski M., Krajewski W., Zabielska J., 2001. Effect of organic matter and liming on the reduction of cadmium uptake from soil by triticale and spring oilseed rape. The Science of the Total Environment, 281: 37-45. Search in Google Scholar

Cornelissen G., Martinsen V., Shitumbanuma V., Alling V., Breedveld G.D., Rutherford D.W., et al., 2013. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agronomy, 3(2): 256-274, https://doi.org/10.3390/agronomy3020256. Search in Google Scholar

Czekała W., Jasiński T., Grzelak M., Witaszek K., Dach J., 2022. Biogas plant operation: digestate as the valuable product. Energies, 15(21), 8275, https://doi.org/10.3390/en15218275. Search in Google Scholar

Deng Z., Ma P., Xiang P., 2023. The mechanism of Pb (II) and Cd (II) removal by coffee grounds biochar: Role of KOH modification. https://doi.org/10.21203/rs.3.rs-2863675/v1 Search in Google Scholar

Dewi W.S., Nurhutami S.R., 2023. Carbon farming in paddy soil to increase soil c and soil health as an implementation of soil carbon 4 per mille. IOP Conference Series: Earth and Environmental Science, 1165(1), 012023, https://doi.org/10.1088/1755-1315/1165/1/012023. Search in Google Scholar

Dey D., Sarangi D., Mondal P., 2023. Biochar: porous carbon material, its role to maintain sustainable environment. pp. 595-621. In: Handbook of Porous Carbon Materials; Singapore: Springer Nature Singapore, doi: 10.1007/978-981-19-7188-4_22. Search in Google Scholar

Dias B.O., Silva C.A., Higashikawa F.S., Roig A., Sanchez-Monedero M.A., 2010. Use of biochar as bulking agent for the composting of poultry manure: Effect on organic matter degradation and humification. Bioresource Technology, 101: 1239-1246, https://doi.org/10.1016/j.biortech.2009.09.024. Search in Google Scholar

Dimobe K., Tondoh J.E., Weber J.C., Bayala J., Ouédraogo K., Greenough K.M., 2018. Farmers’ preferred tree species and their potential carbon stocks in southern Burkina Faso: implications for biocarbon initiatives. Plos One, 13(12), e0199488, https://doi.org/10.1371/journal.pone.0199488. Search in Google Scholar

EC (European Commission). The European Green Deal COM/2019/640; European Commission: Brussels, Belgium, 2019 Search in Google Scholar

Fischer D., Glaser B., 2012. Synergisms between Compost and Biochar for Sustainable Soil Amelioration. Management of Organic Waste, Dr. Sunil Kumar (Ed.), ISBN: 978-953-307-925-7, InTech, 167-198. DOI: 10.5772/31200 Search in Google Scholar

Gebremedhin G.H., Halieselassie B., Berhe D., Belay T., 2015. Effect of biochar on yield and yield components of wheat and post-harvest soil properties in Tigray, Ethiopia. Journal of Fertilizer & Pesticides, 6: 1-4. Search in Google Scholar

Gerlach A., Schmidt H.P., 2014. The use of biochar in cattle farming. The Biochar journal 2014, Arbaz, Switzerland ISSN 2297-1114; available online: https://www.biochar-journal.org/en/ct/9 (accessed on 20.11.2023). Search in Google Scholar

Gładki J., 2017. Biochar as a chance for sustainable development. On the basis of the work and own research of FLUID. Second edition - revised and enlarged. Oficyna Poligraficzna Apla, ISBN 978-83-65487-01-8, available in Internet. Search in Google Scholar

Gokul A., Mabaso J., Henema N., Otomo L., Bakare O.O., et al., 2023. Sustainable agriculture through the enhancement of microbial biocontrol agents: Current challenges and new perspectives. Applied Sciences, 13(11), 6507, doi: 10.3390/app13116507. Search in Google Scholar

Graber E.R., Harel Y.M., Kolton M., Cytryn E., Silber A., et al., 2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 337: 481-496, doi: 10.1007/s11104-010-0544-6. Search in Google Scholar

Grimblatt V., 2021. The challenge of agriculture: increase the productivity in a sustainable way. pp. 01-06. In: 2021 Forum on specification & Design Languages (FDL); IEEE, doi: 10.1109/FDL53530.2021.9568381. Search in Google Scholar

Guo J., Su G., Zhang J., Wang G., 2008. Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi – arid land condition. African Journal of Biotechnology, 7: 1829-1838. Search in Google Scholar

Haider G., Joseph S., Steffens D., Müller C., Taherymoosavi S., et al., 2020. Mineral nitrogen captured in field-aged biochar is plant-available. Scientific Reports, 10(1), Article number: 13816, https://doi.org/10.1038/s41598-020-70586-x. Search in Google Scholar

Hamidzadeh Z., Ghorbannezhad P., Ketabchi M.R., Yeganeh B., 2023. Biomass-derived biochar and its application in agriculture. Fuel, 341, 127701, doi: 10.1016/j.fuel.2023.127701. Search in Google Scholar

Holzleitner C., Gawlik T., 2022. Carbon farming in the EU. Food Science and Technology, 36(1): 36-39. Search in Google Scholar

Hönle S., Heidecke C., 2023. Status and current considerations on carbon farming in selected European countries (No. EGU23-17445). Copernicus Meetings, doi: 10.5194/egusphereegu23-17445. Search in Google Scholar

Hossain M.K., Strezov V., Chan K.Y., Ziolkowski A., Nelson P.F., 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar, Journal of Environmental Management, 92: 223-228. . Search in Google Scholar

Hussain R., Ravi K., 2022. Investigating soil properties and vegetation parameters in different biochar-amended vegetated soil at large suction for application in bioengineered structures. Scientific Reports, 12, Article number: 21261, https://doi.org/10.1038/s41598-02. Search in Google Scholar

Ibarrola R., Shackely S., Hammond J., 2012. Pyrolysis biochar systems for recovering biodegradable materials: a life cycle carbon assessment. Waste Management. 32: 859-868. Search in Google Scholar

Igliński B., Buczkowski R., Cichosz M., 2009. Technologie bioenergetyczne. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń. Search in Google Scholar

International Biochar Initiative (IBI), 2015. http://www.biochar-international.org/biochar. Search in Google Scholar

Jakubiak M., Kordylewski W., 2010. Toryfikacja biomasy. Archiwum spalania PIS, 10(1-2): 1-9. Search in Google Scholar

Jaworski J., 2012. Biowęgiel. Kontekst ponownego ‘odkrycia’ zastosowania węgla drzewnego w agrokulturze oraz jego potencjalne znaczenie odnośnie kryzysów globalnych, a także ruch społeczny z tym związany. (przedsiębiorstwa, organizacje, konferencje, źródła informacji online) http://www.sibg.org.pl/UserFiles/File/opracowanie%20biowegiel%20kontekst%20znaczenie%20ruch%20spoleczny.pdf (accessed 09.05.2012). Search in Google Scholar

Jeffery S., Ábalos D., Prodana M., Bastos A.C., GroenigenJ.W., Hungate B.A., Verheijen F., 2017. Biochar boosts tropical but not temperate crop yields. Environmental Research Letters, 12(5), 053001. https://doi.org/10.1088/1748-9326/aa67bd Search in Google Scholar

Jolánkai M., Birkás M., Tarnawa Á., Kassai K.M., 2019. Agriculture and climate change. International Climate Protection, pp. 65-71, doi: 10.1007/978-3-030-03816-8_10. Search in Google Scholar

Jones D.L., Rousk J., Edwards-Jones G., DeLuca T.H., Murphy D.V., 2012. Biochar mediated changes in soil quality and plant growth in three year field trial. Soil Biology and Biochemistry, 45: 113-124. . Search in Google Scholar

Kang M.S., Banga S.S., 2013. Global agriculture and climate change. Journal of Crop Improvement, 27(6): 667-692. Search in Google Scholar

Karhu K., Mattila T., Bergstrom I., Regina K., 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study. Agriculture, Ecosystems and Environmental, 140: 309-313. Search in Google Scholar

Karki T., Gyawaly P., 2021. Conservation agriculture mitigates the effects of climate change. Journal of Nepal Agricultural Research Council, 7: 122-132, https://doi.org/10.3126/jnarc.v7i1.36934. Search in Google Scholar

Keutgen A.J., 2023. Climate change: challenges and limitations in agriculture. In: IOP Conference Series: Earth and Environmental Science (Vol. 1183, No. 1, p. 012069). IOP Publishing, doi: 10.1088/1755-1315/1183/1/012069. Search in Google Scholar

Khakimov P., Aliev J., Thomas T., Ilyasov J., Dunston S,. 2020. Climate change effects on agriculture and food security in Tajikistan. Silk Road a Journal of Eurasian Development, 2(1): 89-112, https://doi.org/10.16997/srjed.33. Search in Google Scholar

Kurth V.J., MacKenzie M.D., DeLuca T.H., 2006. Estimating charcoal content in forest mineral soils. Geoderma, 137(1-2): 135-139., Search in Google Scholar

Kuś J., Krasowicz S., 2001. Przyrodniczo-organizacyjne uwarunkowania zrównoważonego rozwoju gospodarstw rolnych. Pamiętnik Puławski, 124: 273-288. Search in Google Scholar

Kutkowska B., 2007. Wdrażanie koncepcji zrównoważonego rozwoju rolnictwa i obszarów wiejskich w Sudetach. Studia i Monografie, 2. IRWiR PAN, Warszawa. Search in Google Scholar

Kwapinski W., Byrne C.M.P., Kryachko E., Wolfram P., Adley C., Leahy J.J., Novotny E.H., Hayes M.H.B., 2010. Biochar from biomass and waste. Waste Biomass Valorization, 1: 177-189. Search in Google Scholar

Kwiatkowska-Malina J., Maciejewska A., 2009. Wpływ materii organicznej na pobieranie metali ciężkich przez rzodkiewkę i facelię. Ochrona Środowiska i Zasobów Naturalnych, 40: 217-223. Search in Google Scholar

Ladha J., Pathak H., Krupnik T., Six J., van Kessel C., 2005. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Advances in Agronomy, 87: 85-156, https://doi.org/10.1016/S0065-2113(05)87003-8. Search in Google Scholar

Lehmann J., 2007. Bio-energy in the black. Frontiers in Ecology and Environment, 5(7): 381-387, https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2. Search in Google Scholar

Lehmann J., Joseph S., 2009. Biochar for Environmental Management: Science and Technology, Earthscan, London & Sterling, VA. 416 pp. Search in Google Scholar

Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W.C., Crowley D., 2011. Biochar effects on soil biota – a review. Soil Biology and Biochemistry, 43(9): 1812-1836, doi: 10.1016/j.soilbio.2011.04.022. Search in Google Scholar

Leifeld J., 2023. Carbon farming: Climate change mitigation via non-permanent carbon sinks. Journal of Environmental Management, doi: 10.1016/j.jenvman.2023.117893. Search in Google Scholar

Maćkowiak C., 1998. Straw as a fertilizer on a no-inventory farm. Wieś Jutra, 5: 46-48. (in Polish) Search in Google Scholar

Major J., Rondon M., Molina D., Riha S.J., Lehmann J., 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 333: 117-128. Search in Google Scholar

Malińska K., 2012. Biocarbon as the answer to current environmental problems. Inżynieria i Ochrona Środowiska, 15(4): 387-403. (in Polish) Search in Google Scholar

Malińska K., Dach J., 2014. Możliwości wykorzystania biowęgla w procesie kompostowania. Inżynieria i Ochrona Środowiska, 36: 28-39, doi: https://doi.org/10.12912/2081139X.03. Search in Google Scholar

Malisa M.N., Hamdan J., Husni M.H.A., 2011. Yield response of kenaf (Hibiscus cannabinus L.) to different rates of charcoal and nitrogen fertilizer on bris soils in Malaysia. Middle-East Journal of Scientific Research, 10(1): 54-59. Search in Google Scholar

Masciandaro G., Macci C., Peruzzi E., Doni S., 2018. Soil carbon in the world: ecosystem services linked to soil carbon in forest and agricultural soils. pp. 1-38. In: The future of soil carbon. Academic Press, doi: 10.1016/B978-0-12-811687-6.00001-8. Search in Google Scholar

McKeown A.W., Warland J., McDonald M.R., 2006. Long-term climate and weather patterns in relation to crop yield: a minireviev. Canadian Journal of Botany, 84(7): 1031-1037. Search in Google Scholar

Mehraj S., Manzoor M.M.M., Sharma R.K., Mir A.H., Khan I.L., Maqbool S., 2022. Climate change and agriculture. pp. 231-239. In: Environmental Studies and Climate Change. CRC Press, doi: 10.1201/9781003220824-17. Search in Google Scholar

Mukherjee A., Lal R., 2013. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy, 3(2): 313-339, https://doi.org/10.3390/agronomy3020313. Search in Google Scholar

Murtaza G., Ahmed Z., Eldin S.M., Ali B., Bawazeer S., et al., 2023. Biochar-Soil-Plant interactions: A cross talk for sustainable agriculture under changing climate. Frontiers in Environmental Science, 11, 1059449, doi: 10.3389/fenvs.2023.1059449. Search in Google Scholar

Mussa K., Saria J., Kusiluka L., Jiwaji N., Gwambene B., et al., 2015. Eliciting smallholder farmers’ tradeoffs and preferences on the attributes of climate smart agriculture in the breadbasket areas of Tanzania using a conjoint experiment method. International Journal of Environmental Protection and Policy, 3(6), 188, https://doi.org/10.11648/j.ijepp.20150306.12. Search in Google Scholar

Nigussie A., Kissi E., Misganaw M., Ambaw G., 2012. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. American-Eurasian Journal of Agricultural and Environmental Sciences, 12(3): 369-376. Search in Google Scholar

Nikitin A.V., Klimentova E.A., Dubovitski A.A., Kastornov N.P., Rogov M.A., Sukhareva T.N., 2022. Adaptive management of climate risk in agricutual enterprises. European Proceedings of Social and Behavioural Sciences, https://doi.org/10.15405/epsbs.2022.02.53. Search in Google Scholar

Nogues I., Miritana V.M., Passatore L., Zacchini M., Peruzzi E., et al., 2023. Biochar soil amendment as carbon farming practice in a Mediterranean environment. Geoderma Regional, doi: 10.1016/j.geodrs.2023.e00634. Search in Google Scholar

Olarieta J.R., Padrò R., Masip G., Rodríguez-Ochoa R., Tello E., 2011. ‘Formiguers’, a historical system of soil fertilization (and biochar production?). Agriculture, ecosystems & environment, 140(1-2): 27-33, https://doi.org/10.1016/j.agee.2010.11.008. Search in Google Scholar

Palansooriya K.N., Wong J.T.F., Hashimoto Y., Huang L., Rinklebe J., et al., 2019. Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1(1): 3-22, https://doi.org/10.1007/s42773-019-00009-2. Search in Google Scholar

Patil J., Pawar A., Chaudhari Y.A., Yadav R.K., 2020. Utilization of microbes for sustainable agriculture: review. International Journal of Microbial Science, 1(1): 58-63, https://doi.org/10.55347/theijms.v1i1.9. Search in Google Scholar

Quosai P., Anstey A., Mohanty A.K., Misra M. 2018. Characterization of biocarbon generated by high- and low-temperature pyrolysis of soy hills and coffee chaff: for polymer composite applications. Royal Society Open Science, 5: 171970. http://doi.org/10.1098/rsos.171970 Search in Google Scholar

Rana A., Sindhu M., Kumar A., Dhaka R.K., Chahar M., et al., 2021. Restoration of heavy metal-contaminated soil and water through biosorbents: a review of current understanding and future challenges. Physiologia Plantarum, https://doi.org/10.1111/ppl.13397. Search in Google Scholar

Read P., 2009. This gift of nature is the best way to save us from climate catastrophe. The Guardian, Mar 27; Commentis free/biochar. Search in Google Scholar

Rehmaan I.U., Jan B., Khan N.F., Islam T., Rehman S., et al., 2022. Nitrogen Biofertilizers. Role in Sustainable Agriculture (Chapter 13). In: Advances in Plant Nitrogen Metabolism; eds: Yousuf P.Y., Shabir P.A., Hakeem K.R., doi: 10.1201/9781003248361-13. Search in Google Scholar

Robertson G.F., Harwood R., 2001. Agriculture, sustainable. Encyclopedia of Biodiversity, National Academy Press, Washington, DC, I: 99-108. Search in Google Scholar

Rodrigues L., Budai A., Elsgaard L., Hardy B., Keel S.G., et al., 2023. The importance of biochar quality and pyrolysis yield for soil carbon sequestration in practice. European Journal of Soil Science, 74(4), e13396, doi: 10.1111/ejss.13396. Search in Google Scholar

Rukhsana, Alam A., 2022. Agriculture, Environment and Sustainable Development: An Overview. Agriculture, Environment and Sustainable Development: Experiences and Case Studies, 3-9, doi: 10.1007/978-3-031-10406-0_1. Search in Google Scholar

Samruthi M., Kannan V., Bharathi A., 2020. Carbon farming: A pragmatic approach to tackle greenhouse gas emission. Journal of Pharmacognosy and Phytochemistry, 9(5): 222-225. Search in Google Scholar

Sanchez M.E., Lindao E., Margaleff D., Martinez O., Moran A., 2009. Pyrolysis of agricultural residues from rape and sunflower: production and characterization of bio-fuels and biochar soil management. Journal of Analytical and Applied Pyrolysis, 85: 142-144. Search in Google Scholar

Sandhu S.S., Sekaran U., Ozlu E., Hoilett N., Kumar S., 2019. Short-term impacts of biochar and manure application on soil labile carbon fractions, enzyme activity, and microbial community structure. Biochar, 1(3): 271-282, https://doi.org/10.1007/s42773-019-00025-2. Search in Google Scholar

Sapek B., 2010. Uwalnianie azotu i fosforu z materii organicznej gleby. Woda-Środowisko-Obszary Wiejskie, 10, 3(31): 229-256. Search in Google Scholar

Sardiñas H.S., Ryals R., Williams N.M., 2022. Carbon farming can enhance pollinator resources: Carbon farming can help protect bees and other wild pollinators that are essential to California agriculture. California Agriculture, 76(4), doi: 10.3733/ca.2022a0014. Search in Google Scholar

Sharma M., Kaushal R., Kaushik P., Ramakrishna S., 2021. Carbon farming: Prospects and challenges. Sustainability, 13(19), 11122, doi: 10.3390/SU131911122. Search in Google Scholar

Shell K.M., Vohra S.Y., Rodene D., Gupta R.B., 2021. Phytore-mediation of nickel via water hyacinth for biocarbon-derived supercapacitor applications. Energy Technology, 9(8), https://doi.org/10.1002/ente.202100130. Search in Google Scholar

Sienkiewicz S., Krzebietke S., Panak H., Czapla J., 2005. Yields of spring barley and spring wheat depending on fertilization in long-term field experiment. Fragmenta Agronomica, (XXII) nr 1(85): 244-253. (in Polish + summary in English) Search in Google Scholar

Singh M., 2023. Engineered biochar-based nanocomposites: a sustainable solution for smart agriculture. pp. 119-131. In: Biochar-Based Nanocomposites for Contaminant Management: Synthesis, Contaminants Removal, and Environmental Sustainability. Cham: Springer International Publishing, doi: 10.1007/978-3-031-28873-9_10. Search in Google Scholar

Sinha S., Singh R.S., Kumar P., Kishore C., Singh P.K., 2018. Agriculture and climate change. Journal of Pharmacognosy and Phytochemistry, 7(1S): 86-90. Search in Google Scholar

Smit B., van der Kolk J., 2023. Carbon farming schemes throughout Europe, an overall inventory and analysis (No. EGU23-16595). Copernicus Meetings, doi: 10.5194/egusphereegu23-16595. Search in Google Scholar

Smith P., Olesen J., 2010. Synergies between the mitigation of, and adaptation to, climate change in agriculture. The Journal of Agricultural Science, 148(5): 543-552, https://doi.org/10.1017/s0021859610000341. Search in Google Scholar

Sohi S., Lopez-Capel E., Krull E., Bol R., 2009. Biochar, climate change and soil: A review to guide future research. CSIRO Land and Water Science Report 05/09, 57 pp. Search in Google Scholar

Solaiman Z.M., Blackwell P., Abbott L.K., Storer P., 2010. Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Research, 48(7), 546, https://doi.org/10.1071/sr10002. Search in Google Scholar

Song W., Guo M., 2012. Quality variations of poultry litter bio-char generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94: 138-145. Search in Google Scholar

Sowa S., Linkiewicz A., 2007. Rośliny genetycznie zmodyfikowane. [In:] Organizmy genetycznie modyfikowane Wyd. Polskie Zrzeszenie Inżynierów i Techników Sanitarnych Oddział Wielkopolski, Poznań, ss: 37-42. Search in Google Scholar

Steiner C., Melear N., Harris K., Das K.C., 2011. Biochar as bulking agent for poultry litter composting. Carbon Management, 2(3): 227-230, https://doi.org/10.4155/cmt.11.15. Search in Google Scholar

Stępień P., Pulka J., Białowiec A., 2017. Organic waste torrefaction – a review: reactor systems, and the biochar properties. Pyrolysis, 37, https://doi.org/10.5772/67644. Search in Google Scholar

Szwejkowski Z., Dragońska E., Suchecki S., 2008. Forecast of influence of expected global warming in year 2050 on crop yielding in north-eastern Poland. Acta Agrophysica, 12(3): 791-800. (in Polish + summary in English) Search in Google Scholar

Tian Z., Wang J.W., Li J., Han B., 2021. Designing future crops: challenges and strategies for sustainable agriculture. The Plant Journal, 105(5): 1165-1178, doi: 10.1111/TPJ.15107. Search in Google Scholar

Topçu P., Yavuz Ö., Tolunay A., 2022. The importance of soil organic carbon in sustainable soil management. Turkish Journal of Forest Science, 6(2): 604-614, doi: 10.32328/turkjforsci.1039785. Search in Google Scholar

Tripathi N., Rodriguez-Uribe A., Weldekidan H., Misra M., Mohanty A.K., 2022. Upcycling of waste jute biomass to advanced biocarbon materials: the effect of pyrolysis temperature on their physicochemical and electrical properties. Materials Advances, 3(24): 9071-9082, https://doi.org/10.1039/d2ma00678b. Search in Google Scholar

Uzoma K.C., Inoue M., Andry N., Fujimaki H., Zahoor A., Nishihara E., 2011. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Mangement, 27(2): 205-212. Search in Google Scholar

Ventura M., Alberti G., Viger M., Jenkins J., Girardin C., Baronti S., 2014. Biochar mineralization and priming effect on som decomposition in two european short rotation coppices. GCB Bioenergy, 7(5):1150-1160. https://doi.org/10.1111/gcbb.12219 Search in Google Scholar

Wang D., Mukome F., Yan D., Wang H., Scow K., & Parikh S., 2015. Phenylurea herbicide sorption to biochars and agricultural soil. Journal of Environmental Science and Health, Part B, 50(8): 544-551. https://doi.org/10.1080/03601234.2015.1028830 Search in Google Scholar

Wang F., Martinez D., Huang J., 2023. Biocarbon-Driven Remediation of Oil Contaminated Soils. pp. 211-218. In: Geo-Congress, doi:10.1061/9780784484661.022. Search in Google Scholar

Wilkin J., 2003. Kierunki i uwarunkowania wykorzystania instrumentów Wspólnej Polityki Rolnej w odniesieniu do polskiego rolnictwa i obszarów wiejskich. Wieś i Rolnictwo, 1, Warszawa. Search in Google Scholar

Wilkin J. (ed.), 2010. Wielofunkcyjność rolnictwa: kierunki badań, podstawy metodologiczne i implikacje praktyczne. Instytut Rozwoju Wsi i Rolnictwa Polskiej Akademii Nauk, Warszawa, 228 pp., ISBN 83-89900-36-X, doi: 10.53098/9798389 900363. Search in Google Scholar

Wołoszyk C., Grześkowiak A., Jakubowski W., 2004. Selected issues of fertilizing management in Poland. Folia Universitatis Agriculturae Stetinensis, Agricultura, 98: 195-202 Search in Google Scholar

Woolf D., 2008. Biochar as a soil amendment: A review of the environmental implications. Organic eprints, available online: https://orgprints.org/id/eprint/13268/1/Biochar_as_a_soil_amendment_-_a_review.pdf (accessed on: 25 11 2023). Search in Google Scholar

Wyzińska M., Smreczak B., 2019. Influence of type and rate of biochar on productivity of winter wheat. In Proceedings of the 2019International Conference “Engineering for Rural Development”, Jelgava, Latvia, 22–24 May 2019; pp. 594-599. Search in Google Scholar

Yadav A.N., Kour D., Kaur T., Devi R., Guleria G., et al., 2020. Microbial biotechnology for sustainable agriculture: current research and future challenges. New and Future Developments in Microbial Biotechnology and Bioengineering, pp. 331-344, doi: 10.1016/B978-0-12-820526-6.00020-8. Search in Google Scholar

Zulfiqar F., Moosa A., Nazir M.M., Ferrante A., Ashraf M., et al., 2022. Biochar: An emerging recipe for designing sustainable horticulture under climate change scenarios. Frontiers in Plant Science, 13, 1018646, doi: 10.3389/fpls.2022. 1018646. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
1 volte all'anno
Argomenti della rivista:
Scienze biologiche, Botanica, Ecologia