Open Access

Shear Strength Enhancement of Cemented Reinforced Sand: Role of Cement Content on the Macro-Mechanical Behavior


Cite

Ahnberg, H., S.E. Johanson, H. Pihl and Carlsson T. (2003). Stabilising effects of different binders in some Swedish Soils. Ground Improvement. 7(1): 9–23.AhnbergH.JohansonS.E.PihlH.CarlssonT.2003Stabilising effects of different binders in some Swedish SoilsGround Improvement7192310.1680/grim.2003.7.1.9Search in Google Scholar

Amini Y, Hamidi A, Asghari E. (2013). Shear strength– dilation characteristics of cemented sand–gravel mixtures. International Journal of Geotechnical Engineering 2014 VOL 8 NO 4.AminiYHamidiAAsghariE.2013Shear strength– dilation characteristics of cemented sand–gravel mixturesInternational Journal of Geotechnical Engineering2014VOL 8NO 410.1179/1939787913Y.0000000026Search in Google Scholar

Aouali, N., Benessalah, I., Arab, A., Ali, B., Abed, M. (2018). Shear Strength Response of Fibre Reinforced Chlef (Algeria) Silty Sand: Laboratory Study. Geotech Geol Eng 2018. Https://doi.org/10.1007/s10706-018-0641-5AoualiN.BenessalahI.ArabA.AliB.AbedM.2018Shear Strength Response of Fibre Reinforced Chlef (Algeria) Silty Sand: Laboratory StudyGeotech Geol Eng2018Https://doi.org/10.1007/s10706-018-0641-510.1007/s10706-018-0641-5Search in Google Scholar

Arab A., (2008). Comportement des sols sous chargement monotone et cyclique. PhD diss., University of Sciences and Technology of Oran, Oran, AlgeriaArabA.2008Comportement des sols sous chargement monotone et cycliquePhD dissUniversity of Sciences and Technology of OranOran, AlgeriaSearch in Google Scholar

Arab A., (2009). Comportement monotone et cyclique d’un sable limoneux. C. R. Mecanique 337, 621–631ArabA.2009Comportement monotone et cyclique d’un sable limoneuxC. R. Mecanique33762163110.1016/j.crme.2009.08.001Search in Google Scholar

Arab A., Sadek M., Belkhatir M., Shahrour I. (2014). Monotonic preloading Effect on the Liquefaction Resistance of Silty Sand: a Laboratory Study. Arabian Journal for Sciences Engineering 39:685–694. DOI 10.1007/s13369-013-0700-4ArabA.SadekM.BelkhatirM.ShahrourI.2014Monotonic preloading Effect on the Liquefaction Resistance of Silty Sand: a Laboratory StudyArabian Journal for Sciences Engineering3968569410.1007/s13369-013-0700-4Open DOISearch in Google Scholar

Asghari, E., Toll, D., & Haeri, S., (2003). Triaxial behaviour of a cemented gravelly sand, Tehran alluvium. Geotechnical and Geological Engineering 21 (1), 1–28.AsghariE.TollD.&HaeriS.2003Triaxial behaviour of a cemented gravelly sand, Tehran alluviumGeotechnical and Geological Engineering21112810.1023/A:1022934624666Search in Google Scholar

ASTM D 3080 (2005). Standard test method for direct shear test of soils under consolidated drained conditions, American Society for Testing and Materials West Conshohocken, 2005.ASTM D 30802005Standard test method for direct shear test of soils under consolidated drained conditions, American Society for Testing and MaterialsWest Conshohocken2005Search in Google Scholar

Baxter, C. D. P., Sharma, M. S. R., Moran, K., Vaziri, H. And Narayanasamy, R, (2011). Use of A ¯ = 0 as a Failure Criterion for Weakly Cemented Soils. J. Geotech. Geoenviron. Eng 137, 161–170.BaxterC. D. P.SharmaM. S. R.MoranK.VaziriH.NarayanasamyR,2011Use of A ¯ = 0 as a Failure Criterion for Weakly Cemented SoilsJ. Geotech. Geoenviron. Eng13716117010.1061/(ASCE)GT.1943-5606.0000414Search in Google Scholar

Belkhatir, M.; Schanz T.; Arab A. (2013). Effect of fines content and void ratio on the saturated hydraulic conductivity and undrained shear strength of sand–silt mixtures, Environ. Earth Sci (2013). doi:10. 1007/s12665-013-2289-zBelkhatirM.SchanzT.ArabA.2013Effect of fines content and void ratio on the saturated hydraulic conductivity and undrained shear strength of sand–silt mixturesEnviron. Earth Sci201310.1007/s12665-013-2289-zOpen DOISearch in Google Scholar

Benessalah, I., Arab, A., Sadek, M., Bouferra R. (2019). Laboratory study on the compressibility of sand–rubber mixtures under one dimensional consolidation loading conditions. Granular Matter (2019) 21: 7. https://doi.org/10.1007/s10035-018-0860-8BenessalahI.ArabA.SadekM.BouferraR.2019Laboratory study on the compressibility of sand–rubber mixtures under one dimensional consolidation loading conditionsGranular Matter(2019)217https://doi.org/10.1007/s10035-018-0860-810.1007/s10035-018-0860-8Search in Google Scholar

Benessalah, I., Lambert, S., Villard, P., Arab, A. (2018). Effect of dynamics on the Soil-geosynthetic interfaces used in reinforced rockfall embankments. Rock slope stability symposium Nov 2018, Chambéry, France. Rock slope stability, 2018. <hal-02000349>BenessalahI.LambertS.VillardP.ArabA.2018Effect of dynamics on the Soil-geosynthetic interfaces used in reinforced rockfall embankmentsRock slope stability symposium2018Chambéry, France. Rock slope stability, 2018. <hal-02000349>Search in Google Scholar

Benessalah I. (2017). Comportement des interfaces géosynthétiques sous chargement dynamique due à l’impact. PhD thesis, Faculty of Civil engineering & Architecture University of Chlef 2017.BenessalahI.2017Comportement des interfaces géosynthétiques sous chargement dynamique due à l’impactPhD thesis, Faculty of Civil engineering & Architecture, University of Chlef2017Search in Google Scholar

Benessalah I., Arab A., Villard P., Merabet K., Bouferra R. (2016). Shear Strength Response of a Geotextile-Reinforced Chlef Sand: A Laboratory Study. Geotech Geol Eng 2016. 34 (6) : pp 1775–1790. Doi:10.1007/s10706-016-9988-7BenessalahI.ArabA.VillardP.MerabetK.BouferraR.2016Shear Strength Response of a Geotextile-Reinforced Chlef Sand: A Laboratory StudyGeotech Geol Eng20163461775179010.1007/s10706-016-9988-7Open DOISearch in Google Scholar

Benessalah I., Arab A., Villard P., Sadek M., Kadri A. (2015). Laboratory Study on Shear Strength Behavior of Reinforced Sandy Soil: Effect of Glass-Fibers Content and Other Parameters. Arab J Sci Eng 2015. 41 (4) : pp 1343-1353. Doi:10.1007/s13369-015-1912-6BenessalahI.ArabA.VillardP.SadekM.KadriA.2015Laboratory Study on Shear Strength Behavior of Reinforced Sandy Soil: Effect of Glass-Fibers Content and Other ParametersArab J Sci Eng20154141343135310.1007/s13369-015-1912-6Open DOISearch in Google Scholar

Bennert, T., Maher, M., Jafari, F. & Gucunski, N. (2000). Use of dredged sediments from newark harbor for geotechnical applications. ASTM Special Technical Publication 1374, 152–164.BennertT.MaherM.JafariF.&GucunskiN.2000Use of dredged sediments from newark harbor for geotechnical applicationsASTM Special Technical Publication137415216410.1520/STP14365SSearch in Google Scholar

Bergado, D. (1996). Soft ground improvement: in lowland and other environments. American Society of Civil EngineersBergadoD.1996Soft ground improvement: in lowland and other environmentsAmerican Society of Civil EngineersSearch in Google Scholar

Chew, S., Kamruzzaman, A. & Lee, F. (2004). Physicochemical and engineering behavior of cement treated clays. Journal of geotechnical and geoenvironmental engineering 130, 696.ChewS.KamruzzamanA.&LeeF.2004Physicochemical and engineering behavior of cement treated claysJournal of geotechnical and geoenvironmental engineering13069610.1061/(ASCE)1090-0241(2004)130:7(696)Search in Google Scholar

Consoli, C. N., Prietto D. M., Ulbrich L. A, (1998). Influence of fiber and cement addition on behavior of sandy soil. Journal of Geotechnical and Geoenvironmental Engineering ASCE. 124, 1211–1214.ConsoliC. N.PriettoD. M.UlbrichL. A1998Influence of fiber and cement addition on behavior of sandy soilJournal of Geotechnical and Geoenvironmental EngineeringASCE1241211121410.1061/(ASCE)1090-0241(1998)124:12(1211)Search in Google Scholar

Consoli NC, Viana da Fonseca A, Cruz RC, Heineck KS, (2009). Fundamental parameters for the stiffness and strength control of artificially cemented sand. Journal of Geotechnical Engineering 135(9):1347e53.ConsoliNCVianada Fonseca ACruzRCHeineckKS2009Fundamental parameters for the stiffness and strength control of artificially cemented sandJournal of Geotechnical Engineering13591347e5310.1061/(ASCE)GT.1943-5606.0000008Search in Google Scholar

Consoli NC, Cruz RC, Floss MF, (2010). Parameters controlling tensile and compressive strength of artificially cemented sand. Journal of Geotechnical and Geoenvironmental Engineering 136(5):759e63.ConsoliNCCruzRCFlossMF2010Parameters controlling tensile and compressive strength of artificially cemented sandJournal of Geotechnical and Geoenvironmental Engineering1365759e6310.1061/(ASCE)GT.1943-5606.0000278Search in Google Scholar

Consoli NC, Cruz RC, Floss MF, (2011). Variables controlling strength of artificially cemented sand: influence of curing time. Journal of Materials in Civil Engineering 23(5):692e6.ConsoliNCCruzRCFlossMF2011Variables controlling strength of artificially cemented sand: influence of curing timeJournal of Materials in Civil Engineering235692e610.1061/(ASCE)MT.1943-5533.0000205Search in Google Scholar

Coop, M. R., & Atkinson, J. H, (1993). The Mechanics of Cemented Carbonate Sands. Geotechnique , 43 (1), 53–68.CoopM. R.&AtkinsonJ. H,1993The Mechanics of Cemented Carbonate SandsGeotechnique431536810.1680/geot.1993.43.1.53Search in Google Scholar

Della N, Arab A, Belkhatir M (2011). A laboratory study of the initial structure and the overconsolidation effects on the undrained monotonic behavior of sandy soil from Chlef region in northern Algeria. Arab J Geosci 4(5– 6):983–991DellaNArabABelkhatirM2011A laboratory study of the initial structure and the overconsolidation effects on the undrained monotonic behavior of sandy soil from Chlef region in northern AlgeriaArab J Geosci45–698399110.1007/s12517-010-0178-2Search in Google Scholar

Della, N., Belkhatir M., Arab A., Canou J. and Dupla JC. (2014). Undrained Monotonic Response and Instability of Medium-Dense Sandy Soil. Marine Georesources and Geotechnology 2014. 33 (6), 487-495. DOI: 10.1080/1064119X.2014.954175DellaN.BelkhatirM.ArabA.CanouJ.DuplaJC.2014Undrained Monotonic Response and Instability of Medium-Dense Sandy SoilMarine Georesources and Geotechnology201433648749510.1080/1064119X.2014.954175Open DOISearch in Google Scholar

Djafer Henni A., Arab A., Belkhatir M., Hamoudi S.A., Khelafi H. (2011). Undrained behavior of silty sand: effect of the overconsolidation ratio. Arab J Geosci doi:10.1007/s12517-011-0365-9DjaferHenni A.ArabA.BelkhatirM.HamoudiS.A.KhelafiH.2011Undrained behavior of silty sand: effect of the overconsolidation ratioArab J Geosci10.1007/s12517-011-0365-9Open DOISearch in Google Scholar

Dos Santos, A.P.S.; Consoli, N.C.; Heineck, K.S.; Coop,M.R. (2010). High-pressure isotropic compression tests on fibre-reinforced cemented sand. J. Geotech. Geoenviron.Eng 136(6), 885–890Dos SantosA.P.S.ConsoliN.C.HeineckK.S.CoopM.R.2010High-pressure isotropic compression tests on fibre-reinforced cemented sandJ. Geotech. Geoenviron.Eng136688589010.1061/(ASCE)GT.1943-5606.0000300Search in Google Scholar

Haeri, S. M., Hamidi, A., Hosseini, S. M., Asghari, E. And Toll, D. G, (2006). Effect of cement type on the mechanical behavior of gravely sand, Geotech. Geol. Eng J., 24, 335–360.HaeriS. M.HamidiA.HosseiniS. M.AsghariE.TollD. G,2006Effect of cement type on the mechanical behavior of gravely sandGeotech. Geol. Eng. J2433536010.1007/s10706-004-7793-1Search in Google Scholar

Hashimoto, H., S. Nishimoto and H. Hayashi, (2009). Investigation of improvement strength variation for the Trencher mixing method. Deep Mixing ‘09 Okinawa.HashimotoH.NishimotoS.HayashiH.2009Investigation of improvement strength variation for the Trencher mixing methodDeep Mixing ‘09OkinawaSearch in Google Scholar

Heathcote, K, and Piper R, (1994). Strength of Cement Stabilised Pressed Earth Blocks with Low Cement Contents. J. Proc. Roy. Soc New South Wales, vol. 127, pp. 33–37.HeathcoteK,PiperR1994Strength of Cement Stabilised Pressed Earth Blocks with Low Cement ContentsJ. Proc. Roy. SocNew South Walesvol. 127333710.5962/p.361335Search in Google Scholar

Hirabayashi, H., H. Taguchi, S. Tokunaga, N. Shinkawa, T. Fujita, H. Inagawa and N. Yasuoka, (2009). Laboratory mixing tests on cement slurry preparation, specimen preparation and curing temperature. Deep Mixing ‘09 Okinawa.HirabayashiH.TaguchiH.TokunagaS.ShinkawaN.FujitaT.InagawaH.YasuokaN.2009Laboratory mixing tests on cement slurry preparation, specimen preparation and curing temperatureDeep Mixing ‘09OkinawaSearch in Google Scholar

Huang, J. T., & Airey, D. W, (1998). Properties of artifically cemented carbonate sand. Journal of Geotechnical and Geoenvironmental Engineering pp 124 (6), 492–499.HuangJ. T.&AireyD. W,1998Properties of artifically cemented carbonate sandJournal of Geotechnical and Geoenvironmental Engineering124649249910.1061/(ASCE)1090-0241(1998)124:6(492)Search in Google Scholar

Kido, Y., S. Nishimoto, H. Hayashi and H. Hashimoto, (2009). Effects of curing temperatures on the strength of cement-treated peat. Deep Mixing ‘09 Okinawa.KidoY.NishimotoS.HayashiH.HashimotoH.2009Effects of curing temperatures on the strength of cement-treated peatDeep Mixing ‘09OkinawaSearch in Google Scholar

Lee MJ, Hong SJ, Choi YM, Lee W, (2010). Evaluation of deformation modulus of cemented sand using CPT and DMT. Engineering Geology 115(1/2):28e35.LeeMJHongSJChoiYMLeeW2010Evaluation of deformation modulus of cemented sand using CPT and DMTEngineering Geology1151/228e3510.1016/j.enggeo.2010.06.016Search in Google Scholar

Maher, M. And Ho, Y, (1993). Behavior of fiber reinforced cemented sand under static and cyclic loads. Geotechnical Testing Journal 16(3), pp. 330–338.MaherM.HoY,1993Behavior of fiber reinforced cemented sand under static and cyclic loadsGeotechnical Testing Journal16333033810.1520/GTJ10054JSearch in Google Scholar

Marri A. Wanatowski D. and Yu H.S. (2010). Drained behaviour of cemented sand in high pressure triaxial compression tests. Procedia Geomechanics and Geoengineering 7 (3), 159–174MarriA. Wanatowski D.YuH.S.2010Drained behaviour of cemented sand in high pressure triaxial compression testsProcedia Geomechanics and Geoengineering7315917410.1080/17486025.2012.663938Search in Google Scholar

Mateus Forcelini, Gregório Rigo Garbin, Vítor Pereira Faro, Nilo Cesar Consoli. (2016). Mechanical Behavior of Soil Cement Blends with Osorio Sand. Procedia Engineering Volume 143, 2016, Pages 75–81MateusForceliniGregórioRigo GarbinVítorPereira FaroNiloCesar Consoli.2016Mechanical Behavior of Soil Cement Blends with Osorio SandProcedia EngineeringVolume 1432016758110.1016/j.proeng.2016.06.010Search in Google Scholar

Merabet, K., Benessalah, I., Chemmam, M., Arab, A. (2019). Laboratory study of shear strength response of Chlef natural sand: Effect of saturation. Marine Georesources & Geotechnology Online first: 11 May 2019. doi.org/10.1080/1064119X.2019.1595792MerabetK.BenessalahI.ChemmamM.ArabA.2019Laboratory study of shear strength response of Chlef natural sand: Effect of saturationMarine Georesources & GeotechnologyOnline first: 11 May 2019doi.org/10.1080/1064119X.2019.159579210.1080/1064119X.2019.1595792Search in Google Scholar

Schnaid, F., Prietto, P., & Consoli, N, (2001). Characterization of Cemented Sand in Triaxial Compression. Journal of Geotechnical and Geoenvironmental Engineering 127 (10), 857–868.SchnaidF.PriettoP.&ConsoliN,2001Characterization of Cemented Sand in Triaxial CompressionJournal of Geotechnical and Geoenvironmental Engineering1271085786810.1061/(ASCE)1090-0241(2001)127:10(857)Search in Google Scholar

Shahnazari H, Rezvani R, (2013). Effective parameters for the breakdown of limestone particles Sands: an experimental study. Engineering Geology 159: 98-105.ShahnazariHRezvaniR2013Effective parameters for the breakdown of limestone particles Sands: an experimental studyEngineering Geology1599810510.1016/j.enggeo.2013.03.005Search in Google Scholar

Sharma, M. S. R., Baxter, C. D. P., Hoffmann, W., Moran, K. And Vaziri, H, (2011). Characterization of weakly cemented sands using nonlinear failure envelopes. Int. J. Rock Mech. Min. Sci 48, 146–151.SharmaM. S. R.BaxterC. D. P.HoffmannW.MoranK.VaziriH,2011Characterization of weakly cemented sands using nonlinear failure envelopesInt. J. Rock Mech. Min. Sci4814615110.1016/j.ijrmms.2010.06.008Search in Google Scholar

Umesha,T.S.,Dinesh,S.V., & Sivapullaiah, P.V, (2009). Control Of Dispersivity Of Soil Using Lime And Cement. International Journal Of Geology Issue 1, Vol. 3, pp 9.8–16UmeshaT.S.DineshS.V.&SivapullaiahP.V2009Control Of Dispersivity Of Soil Using Lime And CementInternational Journal Of GeologyIssue 1Vol. 398–16Search in Google Scholar

Venkatarama Reddy, B. V. And Gupta, A. (2005). Characteristics of soil-cement blocks using highly sandy soils. Materials and Structures Vol. 38, No. 6, pp. 651–658.VenkataramaReddyVB.GuptaA.2005Characteristics of soil-cement blocks using highly sandy soilsMaterials and StructuresVol. 38No. 665165810.1007/BF02481596Search in Google Scholar

Walker, P. Strength, (1995). Durability and Shrinkage Characteristics of Cement Stabilised Soil Blocks. Cement & Concrete Composites 17, 4, pp. 301. 310.WalkerP. Strength,1995Durability and Shrinkage Characteristics of Cement Stabilised Soil BlocksCement & Concrete Composites17430110.1016/0958-9465(95)00019-9Search in Google Scholar

Zillur Rabbi ATM., J. Kuwano, J. Deng , T. Wee Boon, (2011). Effect of curing stress and period on the mechanical properties of cement-mixed sand. Soils And Foundations. Japanese Geotechnical Society vol. 51, no. 4, 651–661.ZillurRabbi ATM.KuwanoJ.DengJ.Wee BoonT.2011Effect of curing stress and period on the mechanical properties of cement-mixed sand. Soils And FoundationsJapanese Geotechnical Societyvol. 51no. 465166110.3208/sandf.51.651Search in Google Scholar

eISSN:
2083-831X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics