1. bookVolume 70 (2021): Issue 1 (January 2021)
Journal Details
First Published
22 Feb 2016
Publication timeframe
1 time per year
access type Open Access

Fate of forest tree biotechnology facing climate change

Published Online: 23 Aug 2021
Page range: 117 - 136
Journal Details
First Published
22 Feb 2016
Publication timeframe
1 time per year

Woody plants have been cultured in vitro since the 1930s. After that time much progress has been made in the culture of tissues, organs, cells, and protoplasts in tree species. Tree biotechnology has been making strides in clonal propagation by organogenesis and somatic embryogenesis. These regeneration studies have paved the way for gene transfer in forest trees. Transgenics from a number of forest tree species carrying a variety of recombinant genes that code for herbicide tolerance, pest resistance, lignin modification, increased woody bio-mass, and flowering control have been produced by Agrobacterium-mediated and biolistic methods, and some of them are undergoing confined field trials. Although relatively stable transgenic clones have been produced by genetic transformation in trees using organogenesis or somatic embryogenesis, there were also unintended unstable genetic events. In order to overcome the problems of randomness of transgene integration and instability reported in Agrobacterium-mediated or biolistically transformed plants, site-specific transgene insertion strategies involving clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) platform offer prospects for precise genome editing in plants. Nevertheless, it is important to monitor phenotypic and genetic stability of clonal material, not just under greenhouse conditions, but also under natural field conditions. Genetically modified poplars have been commercialized in China, and eucalypts and loblolly pine are expected to be released for commercial deployment in USA. Clonal forestry and transgenic forestry have to cope with rapid global climate changes in the future. Climate change is impacting species distributions and is a significant threat to biodiversity. Therefore, it is important to deploy Strategies that will assist the survival and evolution of forest tree species facing rapid climate change. Assisted migration (managed relocation) and biotechnological approaches offer prospects for adaptation of forest trees to climate change.


Ahuja MR (1983) Somatic cell differentiation and rapid clonal propagation of aspen. Silvae Genet 32:131-135 Search in Google Scholar

Ahuja MR (1984) A commercially feasible micropropagation method for aspen. Silvae Genet 33:174-176 Search in Google Scholar

Ahuja MR (1986) Aspen. In: Evans DE, Sharp WR, Ammarito PJ (eds) Hanbook of plant cell culture, McMillan Publishing Company, New York, pp 626-651 Search in Google Scholar

Ahuja MR (1987a) In vitro propagation of poplar and aspen. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry. Vol. 3. Martinus Nijhoff Publishers, Dordrecht, pp 207-223 https://doi.org/10.1007/978-94-017-0992-7_1610.1007/978-94-017-0992-7_16 Search in Google Scholar

Ahuja MR (1987b) Somaclonal variation. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry. Vol 1. Martinus Nijhoff Publishers, Dordrecht, pp 272-285. https://doi.org/10.1007/978-94-017-0994-1_1610.1007/978-94-017-0994-1_16 Search in Google Scholar

Ahuja MR (1988a) Somatic cell genetics of woody plants. Kluwer Academic Publishers, Dordrecht10.1007/978-94-009-2811-4 Search in Google Scholar

Ahuja MR (1988b) Gene transfer in forest trees. In: Hanover JE, Keathley DE (eds) Genetic Manipulation of Woody Plants. Plenum Press, New York, pp. 25-41. https://doi.org/10.1007/978-1-4613-1661-9_210.1007/978-1-4613-1661-9_2 Search in Google Scholar

Ahuja MR (1991) Woody plant biotechnology. Plenum Press, New York https://doi.org/10.1007/978-1-4684-7932-4_110.1007/978-1-4684-7932-4_1 Search in Google Scholar

Ahuja MR (1993a) Micropropagation of woody plants. Kluwer Academic Publishers, Dordrecht.10.1007/978-94-015-8116-5 Search in Google Scholar

Ahuja MR (1993b) Regeneration and germplasm preservation in aspen-Populus. In: Ahuja MR (ed) Micropropgation of woody plants. Kluwer Academic Publishers, Dordrecht, pp 187-194 https://doi.org/10.1007/978-94-015-8116-5_1110.1007/978-94-015-8116-5_11 Search in Google Scholar

Ahuja MR (1996) Micropropagation and field testing of frost-tolerant Sequoia sempervirens genotypes. In: LeBlanc J (ed) Proceeding of the conference on coast redwood forest ecology and management. Humboldt State University, Arcata, pp 153-155 Search in Google Scholar

Ahuja MR (1997) Transgenes and genetic instability. In: Klopfenstein NB, Chun WYW, Kim MS, Ahuja MR (eds) Micropropagation and genetic engineering and molecular genetics of Populus. Tech. Rep. RM-GTR-297, USDA Forest Service, Rocky Mountain Research Station, Fort Collins, pp 90-100 Search in Google Scholar

Ahuja MR (1998) Somaclonal genetics of forest trees. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic Publishers, Dordrecht, pp 105-121 https://doi.org/10.1007/978-94-015-9125-6_610.1007/978-94-015-9125-6_6 Search in Google Scholar

Ahuja MR (2000) Genetic engineering in forest trees: state of the art and future perspectives. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants. Vol 1. Kluwer Academic Publishers, Dordrecht, pp 31-49 https://doi.org/10.1007/978-94-017-2311-4_210.1007/978-94-017-2311-4_2 Search in Google Scholar

Ahuja MR (2001) Recent advances in molecular genetics of forest trees. Euphytica 121: 73-19510.1023/A:1012226319449 Search in Google Scholar

Ahuja MR (2005) Polyploidy in gymnosperms: Revisited. Silvae Genet 54:59-69 https://doi.org/10.1515/sg-2005-001010.1515/sg-2005-0010 Search in Google Scholar

Ahuja MR (2009a) Genetic constitution and diversity in four narrow endemic redwoods from the family Cupressaceae. Euphytica 165:5-19 https://doi.org/10.1007/s10681-008-9813-310.1007/s10681-008-9813-3 Search in Google Scholar

Ahuja MR (2009 b). Transgene stability and dispersal in forest trees. Trees 23: 1125-1135. https://doi.org/10.1007/s00468-009-0362-810.1007/s00468-009-0362-8 Search in Google Scholar

Ahuja MR (2011a) Strategies for conservation of germplasm in endemic redwoods in the face on climate change: a review. Plant Genetic Resources 9:411-422. https://doi.org/10.1017/s147926211100015310.1017/S1479262111000153 Search in Google Scholar

Ahuja MR (2011 b) Fate of transgenes in the forest tree genome. Tree Genetics & Genomes 7: 221-230. https://doi.org/10.1007/s11295-010-0339-110.1007/s11295-010-0339-1 Search in Google Scholar

Ahuja MR (2014a) Regulation of transgene expression and containment in forest trees. In: Ramawat KG, Merillon JM, Ahuja MR (eds) Tree Biotechnology. CRC Press, Boca Raton, pp337-365 Search in Google Scholar

Ahuja MR (2014b) Next generation plant biotechnology. In: Ahuja MR, Ramawat KG (eds) Biotechnology and biodiversity. Springer International Publishing, Switzerland, pp 77-100. https://doi.org/10.1007/978-3-319-09381-9_610.1007/978-3-319-09381-9_6 Search in Google Scholar

Ahuja MR (2017) Climate change, genetic diversity, and conservation of paleoendemic redwoods. In: Ahuja MR, Jain SM (eds) Biodiversity and conservation of woody plants. Springer Verlag, Switzerland, pp 69-93 https://doi.org/10.1007/978-3-319-66426-2_310.1007/978-3-319-66426-2_3 Search in Google Scholar

Ahuja MR, Fladung M (1996) Stability and expression of chimeric genes in Populus. In: Ahuja MR, Boerjan W, Neale DB (eds.) Somatic cell genetics and molecular genetics of trees. Kluwer Academic Publishers, Dordrecht, pp 89-96. https://doi.org/10.1007/978-94-011-3983-0_1210.1007/978-94-011-3983-0_12 Search in Google Scholar

Ahuja MR, Fladung M (2014) Integration and inheritance of transgenes in crop plants and trees. Tree Genetics & Genomes 10:779-790 https://doi.org/10.1007/s11295-014-0724-210.1007/s11295-014-0724-2 Search in Google Scholar

Ahuja MR, Libby WJ (1993a) Clonal forestry I. Genetics and biotechnology. Springer Verlag, Berlin. https://doi.org/10.1007/978-3-642-84175-010.1007/978-3-642-84175-0 Search in Google Scholar

Ahuja MR, Libby WJ (1993b) Clonal forestry II. Conservation and application. Springer Verlag, Berlin. https://doi.org/10.1007/978-3-642-84813-110.1007/978-3-642-84813-1 Search in Google Scholar

Ahuja MR, Muhs HJ (1985) In vitro techniques in clonal propagation of forest trees. In: Schaefer-Menuhr (ed) In vitro techniques propagation and long-term storage. Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht, pp. 41-49 Search in Google Scholar

Ahuja MR, Neale DB (2002) Origins of polyploidy in coast redwood (Sequoia sempervirens (D.Don) Endl.) and relationship of coast redwood to other genera of Taxodiaceae. Silvae Genet 51: 93-100 Search in Google Scholar

Abaimov AP (2010) Geographical distribution and genetics of Siberian larch species. In: Osawa A, Zyryanova OA, Matsuura Y, Kajimoto T, Wein RW (eds) Permafrost ecosystems – Siberian larch forests, Springer Verlag, Berlin, pp. 41-58. https://doi.org/10.1007/978-1-4020-9693-8_310.1007/978-1-4020-9693-8_3 Search in Google Scholar

Aitkin SN, Yeaman S, Holiday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes of tree populations. Evolutionary Applications 1:95-111 https://doi.org/10.1111/j.1752-4571.2007.00013.x10.1111/j.1752-4571.2007.00013.x335239525567494 Search in Google Scholar

Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321:1481-1494 https://doi.org/10.1126/science.116078710.1126/science.116078718687921 Search in Google Scholar

Allen CD, Breshears DD, McDowell (2015) On underestimating of global vulnerability to tree mortality and forest die-off from hotter drought in the anthropocene. Ecosphere 6:129. https://doi.org/10.1890/es15-00203.110.1890/ES15-00203.1 Search in Google Scholar

Anderson JT, Inouye DW, McKinney AM, Colauti RI, Mitchell-Olds T (2012) Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc R Soc B 279:3843-3852 https://doi.org/10.1098/rspb.2012.105110.1098/rspb.2012.1051341591422787021 Search in Google Scholar

Arnaud Y, Franclet A, Tranvan H, Jacques M (1993) Micropropagation and rejuve-nation of Sequoia sempervirens (Lamb) Endl.): A review. Annales des Sciences Forestieres 50:273-295. https://doi.org/10.1051/forest:1993030510.1051/forest:19930305 Search in Google Scholar

Arno SF, Habeck JR (1972) Ecology of Alpim=ne larch (Larix lyallii) in the Pacific Northwest. Ecological Monograph 42:417-450 https://doi.org/10.2307/194216610.2307/1942166 Search in Google Scholar

Bairu MW, Aremu AO, van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147-173 https://doi.org/10.1007/s10725-010-9554-x10.1007/s10725-010-9554-x Search in Google Scholar

Ball EA (1950) Differentiation in a callus culture of Sequoia sempervirens. Growth 14: 295-325 Search in Google Scholar

Ball EA, Morris DM, Reydelius JA (1978) Cloning of Sequoia sempervirens from mature trees through tissue culture. Round Table Conference. In Vitro Multiplication of Woody Species, Gamboloux, Belgium, pp.181-226 Search in Google Scholar

Bastin J-F, Finegold Y, Garcia C, Mollicone D, Rezende M, Routh D, Zohner CM, Crowther TW (2019) The global tree restoration potential, Science 365:76-79 https://doi.org/10.1126/science.aax084810.1126/science.aax084831273120 Search in Google Scholar

Battisti A, Larsson S (2015) Climate change and insect pest distribution range. In: Björkman C, Niemelä (eds) Climate change and insect pests, CAB International, pp 1-15. https://doi.org/10.1079/9781780643786.000110.1079/9781780643786.0001 Search in Google Scholar

Battles JJ, Robards T, Das A, Waring K, Gilless JK, Biging G, Schurr F (2008) Climate change impacts on forest growth and tree mortality: a data-driven modeling study in the mixed-conifer forest of Sierra Nevada, California. Climatic Change 87 (Supplement 1):S193-S213 https://doi.org/10.1007/s10584-007-9358-910.1007/s10584-007-9358-9 Search in Google Scholar

Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365-377 https://doi.org/10.1111/j.1461-0248.2011.01736.x10.1111/j.1461-0248.2011.01736.x388058422257223 Search in Google Scholar

Bellard C, Leclerc C, Leroy B, Bakkenes M, Veloz S, Thuiller W, Courchamp F (2014) Vulnerability of biodiversity hotspots to global change. Global Ecol Biogeogr 23:1376-1386. https://doi.org/10.1111/geb.1222810.1111/geb.12228 Search in Google Scholar

Bello-Bello J, Iglesioas-Andreu L, Sanchez-Velasquez L, Casas-Martinez J, Santa-na-Buzzy N (2012) In vitro regeneration of Pinus brutia Ten. Var. eldarica (Medw.) through organogenesis. African J Biotech 11:15982-15987 https://doi.org/10.5897/ajb12.218010.5897/AJB12.2180 Search in Google Scholar

Bock R (2006) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opinion Biotech 17: 1-7 Search in Google Scholar

Boerjan W (2005) Biotechnology and domestication of forest trees. Curr Opinion Biotech 16: 159-166. https://doi.org/10.1016/j.copbio.2005.03.00310.1016/j.copbio.2005.03.00315831381 Search in Google Scholar

Bon MC, Riccari F, Monteuuis O (1994) Influence of phase change within a 90-year old Sequoia sempervirens on its in vitro organogenic capacity and protein patterns. Trees 8:283-287. https://doi.org/10.1007/bf0020267210.1007/BF00202672 Search in Google Scholar

Bonga JM (2012) Recalcitrance in the in vitro propagation in conifers. In: Park YS, Bonga JM (eds) Proc IUFRO WP 2.09.02 conference on Integrating vegetative propagation, biotechnology and genetic improvement for tree production and sustainable forest management. Brno Czech Republic, pp 37-46 Search in Google Scholar

Bonga JM (2016) Conifer clonal propagation in tree improvement programs. In: Park YS, Bonga JM, Moon HK (eds) Vegetative propagation of forest trees. National Institute of Forest Science (NIFoS) Korea, pp 3-31 Search in Google Scholar

Bonga JM, Durzan DJ (1987) Cell and tissue culture in forestry. Vol. 3. Martinus Nijhoff Publishers, Dordrecht. https://doi.org/10.1007/978-94-009-4484-810.1007/978-94-009-4484-8 Search in Google Scholar

Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tiss Organ Cult 100:241-254 https://doi.org/10.1007/s11240-009-9647-210.1007/s11240-009-9647-2 Search in Google Scholar

Bonga JM, Parks YS, Trontin JF (2018) Proceedings of the 5th international conference of the IUFRO Unit 2,09.02 on “Clonal Trees in the bioeconomy age: opportunities and challenges.” September 10-15, 2018. Coimbra, Portugal Search in Google Scholar

Botkin DB, Saxe H, Arauju MB, Betts R, Bradshaw RHW, Cedhagen T, Chesson P, Dawson TP, Etterson JR, Faith DP, Ferrier S, Guisan A, Hansen AS, Hilbert DW, Loehle C, Margules, C, New M, Sobel MJ, Stockwell DRB (2007) Forecasting the effects of global warming on biodiversity. Bioscience 57:227-236 https://doi.org/10.1641/b57030610.1641/B570306 Search in Google Scholar

Boulay M (1978) Multiplication rapide du Sequoia sempervirens en culture in vitro. Annales AFOCEL, pp 37-66 Search in Google Scholar

Boyd E (2010) Societal choice for climate change futures: trees, biotechnology and clean development. Bioscience 60:743-750 https://doi.org/10.1525/bio.2010.60.9.1110.1525/bio.2010.60.9.11 Search in Google Scholar

Bradford KJ, Deynze AV, Gutterson N, Parrott W, Strauss SH (2005) Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nature Biotech 23: 439-444. https://doi.org/10.1038/nbt108410.1038/nbt108415815671 Search in Google Scholar

Briones MV, Hoenicka H, Canñs, LA, Beltrán, JP, Hanelt D, Sharry S, Fladung M (2020) Efficient evaluation of gene containment system for poplar through early flowering induction. Plant cell Rep 39:577-587 https://doi.org/10.1007/s00299-020-02515-110.1007/s00299-020-02515-1716515432052127 Search in Google Scholar

Breton D, Harvengt L, Trontin JF, Bouvet A, Favre JM (2006) Long-term subculture randomly affects morphology and subsequent maturation of early somatic embryos in maritime pine. Plant Cell Tiss Organ Cult 87:95-108 https://doi.org/10.1007/s11240-006-9144-910.1007/s11240-006-9144-9 Search in Google Scholar

Bruegmann T, Wetzel H, Hettrich K, Smeds A, Willför S, Kersten B, Fladung M (2019a) Knockdown of PCBERI 1, a gene of neolignin biosynthesis results in increased poplar growth. Planta 249:515-525 https://doi.org/10.1007/s00425-018-3021-810.1007/s00425-018-3021-830269193 Search in Google Scholar

Bruegmann T, Deecke K, Fladung M (2019b) Evaluating the efficiency of gRNAs in CRISPR/Cas9 mediated genome editing in poplars. Int J Mol Sci 20:3623 https://doi.org/10.3390/ijms2015362310.3390/ijms20153623669623131344908 Search in Google Scholar

Brunner AM, Li J, DiFazio SP, Schevchenko O, Montgomery BE, Mohamed R, Wei H, Ma C, Elias AN, Van Wormer K, Strauss SH (2007) Genetic containment of forest plantations. Tree Genetics & Genomes 3: 75-100 https://doi.org/10.1007/s11295-006-0067-810.1007/s11295-006-0067-8 Search in Google Scholar

Butaye KMJ, Cammue BPA, Delauré SL, De Bolle MFC (2005) Approaches to minimize variation in transgene expression in plants. Mol Breed 16:79-91 https://doi.org/10.1007/s11032-005-4929-910.1007/s11032-005-4929-9 Search in Google Scholar

Cahill A, Aiello-Lammens E, Fisher-Reid MS, Hua X, Karanewsky CJ, Ryu HY, Sbeglia GC, Spagnolo F, Waldron JB, Warsi O, Wiens JJ (2013) How does climate change cause extinction? Proc R Soc B 280:20121890 https://doi.org/10.1098/rspb.2012.189010.1098/rspb.2012.1890357442123075836 Search in Google Scholar

Chalupa V (1985) Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) Karst. Comm Inst For Zech Republic 14:57-63 Search in Google Scholar

Chang S, Mahon EL, McKay HA, Rottman WH, Strauss SH, Pijut PM, Powell WA, Coffey V, Lu H, Mansfield SD, Jones TJ (2018) Genetic engineering of trees: progress and new horizons. In Vitro Cell Develop Biol-Plant 54:341-376 https://doi.org/10.1007/s11627-018-9914-110.1007/s11627-018-9914-1 Search in Google Scholar

Chang CY-Y, Bräutigam K, Hüner NPA, Ensminger I (2021) Champions of winter survival: cold acclimation and molecular regulation of cold hardiness in evergreen conifers, New Phytologist 229:675-691 https://doi.org/10.1111/nph.1690410.1111/nph.1690432869329 Search in Google Scholar

Charest PJ, Michel MF (1991) Basics of plant genetic engineering and potential application to tree species. Information Report PI-X-104. Petawawa National Forestry Institute, Forestry Canada, pp 1-48 Search in Google Scholar

Charity JA, Holland L, Grace LJ, Walter C (2005) Consistent and stable expression of the nptII, uidA and bar genes in transgenic Pinus radiate after Agrobacterium tumefaciens-mediated transformation using nurse cultures. Plant Cell Rep 23:606-616. https://doi.org/10.1007/s00299-004-0851-610.1007/s00299-004-0851-615449015 Search in Google Scholar

Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends in Plant Science 12 https://doi.org/10.1016/j.tplants.2007.07.00210.1016/j.tplants.2007.07.00217855156 Search in Google Scholar

Coleman GD, Ernst SG (1989) In vitro shoot regeneration of Populus deltoids: effect of cytokinin and genotype. Plant Cell Rep 8:459-462 https://doi.org/10.1007/bf0026904810.1007/BF0026904824233528 Search in Google Scholar

Coritzo M, de Diego N, Moncaleán P, Ordás RJ (2009) Micropropgation of adult stone pine (Pinus pinea L.). Trees 23:835-842 https://doi.org/10.1007/s00468-009-0325-010.1007/s00468-009-0325-0 Search in Google Scholar

Craufurd PQ, and Wheeler TR (2009) Climate change and flowering time in annual crops. J. Exptl Bot 60:2529-2539. https://doi.org/10.1093/jxb/erp19610.1093/jxb/erp19619505929 Search in Google Scholar

Custers R, Bartsch D, Fladung M, Nilsson O, Pilate G, Sweet J, Boerjan W (2016) EU regulations impede market introduction of GM forest trees. Trends Plant Sci 21:283-285. https://doi.org/10.1016/j.tplants.2016.01.01510.1016/j.tplants.2016.01.01526897457 Search in Google Scholar

Davies-Barnard T (2014) Cooling the Earth with crops. In: Hester RE, Harrison RM (eds) Geoengineering of the climate change. Royal Society of Chemistry Publishers, pp 105-130 Search in Google Scholar

Davis MB, Shaw RG, Etterson JR (2005) Evolutionary responses to climate change. Ecology 86:1704-1704. https://doi.org/10.1890/03-078810.1890/03-0788 Search in Google Scholar

De Oliveira LF, Ribas LLF, Quoirin M, Koehler HS, Amano E, Higa AR (2012) Micro-propagation of Pinus taeda L. from juvenile material. Tree Forestry Science Biotech 6:96-101 Search in Google Scholar

DeRose RJ, Mock KE, Long JN (2015) Cytotype differences in radial increment provide novel insight into aspen reproductive ecology and stand dynamics. Can J For Res 45:1-8. https://doi.org/10.1139/cjfr-2014-038210.1139/cjfr-2014-0382 Search in Google Scholar

DeWoody J, Rowe CA, Hipkins VD, Mock KE (2008) “Pando” lives: molecular genetic evidence of a giant aspen clone in central Utah. Western North American Naturalist 68:493-497. https://doi.org/10.3398/1527-0904-68.4.49310.3398/1527-0904-68.4.493 Search in Google Scholar

Domke GM, Oswalt SN, Walters BF, Morin RS (2020) Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc Natl Acad Sci (USA) 117:24649-24651 https://doi.org/10.1073/pnas.201084011710.1073/pnas.2010840117754722632958649 Search in Google Scholar

Ellstrand NC (2018) “Born to run”? Not necessarily: species and trait bias in persistent free-living transgene plants. Front Bioeng Biotechnol 6:88 https://doi.org/10.3389/fbioe.2018.0008810.3389/fbioe.2018.00088603785530018952 Search in Google Scholar

Eriksson G, Ekberg I, Clapham D (2013) Genetics applied to forestry, 3rd Edition. Elanders Sverige Printing, Sweden Search in Google Scholar

Erst AA, Bakulin VT, Erst AS, Kuznetzov A, Zhumanovich E (2014) In vitro propagation of ornamental hybrids of Populus L. Bioscience Biotech Res Asia 11:69-77. https://doi.org/10.13005/bbra/144210.13005/bbra/1442 Search in Google Scholar

Ewald D (2007) Micropropagation of yew (Taxus baccata L.). In: Jain SM, Häggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer Verlag, Berlin, pp 117-123 https://doi.org/10.1007/978-1-4020-6352-7_1110.1007/978-1-4020-6352-7_11 Search in Google Scholar

Ewald D, Hu, J, Yang M (2006) Transgenic forest trees in China. In: Faldung M, Ewald D (eds) Tree transgenesis: recent developments. Springer Verlag, Berlin, pp. 25-45. https://doi.org/10.1007/3-540-32199-3_210.1007/3-540-32199-3_2 Search in Google Scholar

Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Scientific Reports 5:12217. https://doi.org/10.1038/srep1221710.1038/srep12217450739826193631 Search in Google Scholar

Farnum P, Lucier A, Meilan R (2007) Ecological and population genetics research imperatives for transgenic trees. Tree Genetics and Genomes 3: 119-133 https://doi.org/10.1007/s11295-006-0063-z10.1007/s11295-006-0063-z Search in Google Scholar

Fawzy S, Osman AI, Doran J, Rooney DW (2020) Strategies for mitigation of climate change- a review. Environmental Chemistry Letters 18:2069-2094 https://doi.org/10.1007/s10311-020-01059-w10.1007/s10311-020-01059-w Search in Google Scholar

Fillatti JJ, Selmer J, McCown B, Haissig B, Comai L (1987) Agrobacterium mediated transformation and regeneration of Populus. Mol Gen Genet 206:192-199. https://doi.org/10.1007/bf0033357410.1007/BF00333574 Search in Google Scholar

Finnegan J, McElroy d (1994) Transgene inactivation: plants fight back. Biotechnology 12:883-888. https://doi.org/10.1038/nbt0994-88310.1038/nbt0994-883 Search in Google Scholar

Finstad K, Bonfils AC, Shearer W, Macdonald P (2007) Trees with novel traits in Canada: regulation and related scientific issues. Tree Genetics & Genomes 3:135-139. https://doi.org/10.1007/s11295-006-0080-y10.1007/s11295-006-0080-y Search in Google Scholar

Fladung M (1990) Transformation of diploid and tetraploid potato clones with the rolC gene of Agrobactrium rhizogenes and characterization of transgenic plants. Plant Breeding 104:295-304. https://doi.org/10.1111/j.1439-0523.1990.tb00439.x10.1111/j.1439-0523.1990.tb00439.x Search in Google Scholar

Fladung M. Becker D (2010) Targeted integration and removal of transgenes in hybrid aspen (Populus tremula L. x P. tremuloides Michx.) using site-specific recombination system. Plant Biol 334-340 Search in Google Scholar

Fladung M, Bullovra A (1992) Further characterization of rolC transgenic tetraploid potato clones, and influence of daylength and level of rolC expression on yield parameters. Plant Breeding 109:18-27 https://doi.org/10.1111/j.1439-0523.1992.tb00145.x10.1111/j.1439-0523.1992.tb00145.x Search in Google Scholar

Fladung M, Hoenicka H (2012) Fifteen years of forest tree biosafety research in Germany. IForest 5:126-130. https://doi.org/10.3832/ifor0619-00510.3832/ifor0619-005 Search in Google Scholar

Fladung M, Hoenicka H, Ahuja MR (2013) Genomic stability and long-term trans-gene expression in poplars. Transgenic Res 22:1167-1178 https://doi.org/10.1007/s11248-013-9719-210.1007/s11248-013-9719-223740206 Search in Google Scholar

Fladung M, Kaldorf M, Gieffers W, Ziegenhagen B, Muhs HJ, Kumar S (2004) Field analysis of transgenic aspen. In: Walter C, Carson M (eds) Plantation forest biotechnology for the 21st century, Kerala, pp 393-403 Search in Google Scholar

Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation of Populus geno-types with different chimeric gene constructs: transformation efficiency and molecular analysis. Transgenic Res. 6: 111-12110.1023/A:1018421620040 Search in Google Scholar

Fladung M, Kumar S (2002) Gene stability in transgenic aspen-Populus. III. T-DNA repeats influence transgene expression differentially among different transgenic lines. Plant Biol 4:329-338. https://doi.org/10.1055/s-2002-3232910.1055/s-2002-32329 Search in Google Scholar

Fladung M, Muhs H, Ahuja MR (1996) Morphological changes in transgenic Populus carrying the rolC gene from Adrobacterium rhizogenes. Silvae Genet 45: 349-354 Search in Google Scholar

Fladung M, Nowitzki O, Kumar S. Hoenicka H (2005) The site-specific recombination systems Cre-lox and FLP-FRT are functionally active in poplar. Forest Genetics 12:121-130 Search in Google Scholar

Fladung M, Schenk, TMH, Polak O, Becker D (2010) Elimination of marker genes and targeted integration via FLP/FRT recombination system from yeast in hybrid aspen (Populus tremula L. x P. tremuloides Michx.). Tree Genetics & Genomes 6:205-217. https://doi.org/10.1007/s11295-009-0241-x10.1007/s11295-009-0241-x Search in Google Scholar

Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc Natl Acad Sci USA 104:1278-1282. https://doi.org/10.1073/pnas.060837910410.1073/pnas.0608379104178311517220273 Search in Google Scholar

Fry JH, Douglas GC, Saieed NT (1997) Somaclonal variation in Populus: an evaluation. In: Klopfenstein NB, Chun WYW, Kim MS, Ahuja MR (eds) Micro-propagation and genetic engineering and molecular genetics of Populus. Tech. Rep. RM-GTR-297, USDA Forest Service, Rocky Mountain Research Station, Fort Collins, pp 33-43 Search in Google Scholar

Fuss S, Candell J, Ciais P et al (2000) Moving towards net-zero emissions requires new alliance for carbon dioxide remonal. One Earth 3:145-149 https://doi.org/10.1016/j.oneear.2020.08.00210.1016/j.oneear.2020.08.002 Search in Google Scholar

Gaira KS, Rawal, RS, Rawat, B, Bhatt ID (2014) Impact of climate change on the flowering of Rhododendron arboretum in central Himalaya, India. Current Science 106:1735-1738 Search in Google Scholar

Gamburg KZ, Voinikov VK (2013) Somaclonal variations as a mean for obtaining regenerants with different growth rates in poplar (Populus x berolinensis Dipp.). Natural Sciences 5:599-607. https://doi.org/10.4236/ns.2013.5507510.4236/ns.2013.55075 Search in Google Scholar

Gao W, Bai S, Gao C, Liu G, Li G, Tan F (2013) Overexpression of TaLEA gene from Tamrix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii x P. nigra). PLoS ONE 8:e67462 https://doi.org/10.1371/journal.pone.006746210.1371/journal.pone.0067462 Search in Google Scholar

Gao J, Dou T, He W, Shen O, Bi F, Deng G, Gao H, Dong T, Li C, Zhang S, Yi G, Hu C, Yang Q (2021) MaMAPK3-MAICE1-MAPOD P7 pathway, a positive regulator of cold tolerance in banana. BMC Plat Biology 21:97 https://doi.org/10.1186/s12870-021-02868-z10.1186/s12870-021-02868-z Search in Google Scholar

Gautheret RJ (1934) Culture du tissue cambial. VR Acad Sci (Paris) 198:2195-2196 Search in Google Scholar

Gautheret RJ (1940) Recherches sur le bourgeonnement du tissue cambial d’ Ulmus campestris, cultitive in vitro. CR Acad Sci (Paris) 210:632-634 Search in Google Scholar

Gidoni D, Srivastava V, Carmi M (2008) Site-specific excision-recombination strategies for elimination of undesirable transgenes from crop plants. In Vitro Cell Dev. Biol. Plant 44: 457-467 https://doi.org/10.1007/s11627-008-9140-310.1007/s11627-008-9140-3 Search in Google Scholar

Gonzalez-Arnao MT, Martinez-Montero ME, Cruz-Croz CA, Engelmann F (2014) Advances in cryogenic techniques for the long-term preservation of plant bio-diversity. In: Ahuja MR, Ramawat GK (eds) Biotechnology and biodiversity, Springer International Publishing, Swtizerland, pp 129-170 https://doi.org/10.1007/978-3-319-09381-9_810.1007/978-3-319-09381-9_8 Search in Google Scholar

Grant MC (1993) The trembling giant. Discover (October):83-88 Search in Google Scholar

Grant MC, Mitton JB, Linhart YB (1992) Even larger oraganisms. Nature 360: 216. https://doi.org/10.1038/360216a010.1038/360216a0 Search in Google Scholar

Guan Y, Li SG, Fan XF, SU ZH (2016) Application of somatic embryogenesis in woody plants. Front Plant Sci 7:938. https://doi.org/10.3389/fpls.2016.0093810.3389/fpls.2016.00938 Search in Google Scholar

Gupta PK, Durzan DJ (1987) Micropropagation and phase specificity in mature elite Douglas fir. J. Amer Soc Hort Sci 112:969-971 Search in Google Scholar

Haberlandt G (1902) Kulturversuche mit isolierten Pflanzenzellen. Sitzungber Akad Wiss Wien Math Naturwiss Kl Abt J 111:69-92 Search in Google Scholar

Häggman H, Raybould A, Borem A, Fox T, Handley L, Hertzberg M, Lu MZ, Macdonald P, Oguchi T, Pasquali G, Pearson L, Peter G, Quemada H, Séguin A, Tattersall K, Ulian E, Walter C, McLean M (2013) Genetically engineered trees for plantation forests: key considerations for environmental risk assessment. Plant Biotech J 11:785-798. https://doi.org/10.1111/pbi.1210010.1111/pbi.12100 Search in Google Scholar

Hakman I, Fowke LC, von Aernold S, Eriksson T (1985) The development of somatic embryos in tissue culture initiated from immature embryos of Picea abies (Norway spruce). Plant Sci 38:53-59 https://doi.org/10.1016/0168-9452(85)90079-210.1016/0168-9452(85)90079-2 Search in Google Scholar

Hawkins S, Leplé JC, Cornu D, Jouanin L, Pilate G (2003) Stability of transgene expression in poplar: a model forest tree species. Ann. For. Sci. 60:.427-438 https://doi.org/10.1051/forest:200303510.1051/forest:2003035 Search in Google Scholar

Hoffmann AA, Willi Y (2008) Detecting genetic response to environmental change. Nature Reviews Genetics 9:421-432. https://doi.org/10.1038/nrg233910.1038/nrg233918463665 Search in Google Scholar

Hoffmann AA, Sgro CM (2011) Climat change and evolutionary adaptation. Nature 470:479-485. https://doi.org/10.1038/nature0967010.1038/nature0967021350480 Search in Google Scholar

Hoenicka H, Fladung M (2006a) Genomic instability in woody plants derived from genetic engineering. In: Fladung M, Ewald D (eds) Transgenesis: recent developments. Springer Verlag, Berlin, pp. 301-321 https://doi.org/10.1007/3-540-32199-3_1410.1007/3-540-32199-3_14 Search in Google Scholar

Hoenicka H, Fladung (2006b) Faster evaluation of sterility strategies in transgenic early flowering poplar. Silvae Genetica 55:285-291 https://doi.org/10.1515/sg-2006-003710.1515/sg-2006-0037 Search in Google Scholar

Hoenicka h, Lautner A, Koch G (2012a) Influence of of over-expression of the FLOWERING PROMOTING FACTOR 1 gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L. x P. tremuloides Michx.). Planta 235:359-373. https://doi.org/10.1007/s00425-011-1507-810.1007/s00425-011-1507-821909761 Search in Google Scholar

Hoenicka H, Lehnhardt D, Polak O, Fladung M (2012b) Early flowering and genetic containment studies in transgenic poplar. iForest 5:138-146 https://doi.org/10.3832/ifor0621-00510.3832/ifor0621-005 Search in Google Scholar

IPCC (2007) Climate change 2007. The physical science basis. Summary for policymakers. www.ipcc.ch Search in Google Scholar

IPCC (2014) Climate change 2014: Impacts, adaptation, and vulnerability. Summary for policymakers. www.ipcc.ch Search in Google Scholar

IPCC (2018) Global warming of 1.5 oC. In: Masson-Delmotte V, Zhai P, Pörtner HO, et al. (eds), An IPCC special report on the impacts of global warming of 1.5 oC above pre-industrial levels and related global greenhouse emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. http://www.ipcc.ch Search in Google Scholar

Iverson LR, Prasad AM, Schwartz MW (2005) Predicting potential changes in suitable habitat and distribution by 2100 for tree species in the eastern United States. J Agric Meteorol 61:29-37. https://doi.org/10.2480/agrmet.61.2910.2480/agrmet.61.29 Search in Google Scholar

Iverson LR, Prasad AM, Matthews SN, Peters M (2008) Estimating potential habitat for 134 eastern US tree species under six climate scenarios. For Ecol Manage 254:390-406. https://doi.org/10.1016/j.foreco.2007.07.02310.1016/j.foreco.2007.07.023 Search in Google Scholar

Iverson LR, McKenzie D (2013) Tree-species range shifts in the changing climate: detecting, modeling, assisting. Landscape Ecology 28:879-889 https://doi.org/10.1007/s10980-013-9885-x10.1007/s10980-013-9885-x Search in Google Scholar

Iverson LR, Peters MP, Prasad AM, Matthews SN (2019) Analysis of climate change impacts on tree species of the eastern US: results of DISTRIB-II modeling. Forests 10 https://doi.org/10.3390/f1004030210.3390/f10040302 Search in Google Scholar

Jain SM, Gupta P (2005) Protocols for somatic embryogenesis of woody plants. Springer Verlag, Dordrecht. https://doi.org/10.1007/1-4020-2985-310.1007/1-4020-2985-3 Search in Google Scholar

Javeline D, Hellmann JJ, Cornejo RC, Shufeldt G (2013) Expert opinion on climate change and threats to biodiversity. 63:666-673 https://doi.org/10.1525/bio.2013.63.8.910.1525/bio.2013.63.8.9 Search in Google Scholar

Joshi R, Shukla A, Sairam RK (2011) In vitro screening of rice genotypes for drought tolerance using polyethylene glycol. Aca Physiol Plant 33:2209-2217. https://doi.org/10.1007/s11738-011-0760-610.1007/s11738-011-0760-6 Search in Google Scholar

Kelly AE, Goulden ML (2007) Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci USA 105: 11823-11826 https://doi.org/10.1073/pnas.080289110510.1073/pnas.0802891105257528618697941 Search in Google Scholar

Keller ER, Senula A (2010) Cryopreservation of plant germplasm. In: Davey MR, Anthony P (eds) Plant cell culture, Wiley Blackwell Publishers, UK, pp 131-151Kirilenko AP, Sedjo RA (2007) Climate change and impacts on forestry. Proc Natl Acad Sci (USA) 104:19697-19702 Search in Google Scholar

Klápště J, Meason D, Dungey H, Telfer RJ, Silcok P, Rapley S (2020) Geno-type-by-environment interaction in coast redwood outside natural distribution – search for environmental cues. BMC Genetics 21:15 https://doi.org/10.1186/s12863-020-0821-110.1186/s12863-020-0821-1701145032041527 Search in Google Scholar

Klimaszeswka K, Trontin JF, Becwar MR, Devillard C, Park YS, Lelu-Walter MA (2007) Recent progress in somatic embryogenesis of four Pinus spp. Tree For Sci Biotech 1:11-25 Search in Google Scholar

Klocko AL, Brunner AM, Huang J, Meilan R, Lu H, Ma C, Morel A, Zhao D, Ault K, Dow M, Howe G, Shevchenko O, Strauss SH (2016) Containment of transgenic trees by suppression of LEAFY. Nature Biotechnology 34:918-922 https://doi.org/10.1038/nbt.363610.1038/nbt.363627606454 Search in Google Scholar

Klocko AL, Lu H, Magnuson A, Brunner AM, Ma C, Strauss RH (2018) Phenotypic expression and stability in a large-scale field study of genetically engineered poplars containing sexual containment transgenes. Front Bioeng Biotechnol 6:100. https://doi.org/10.3389/fbioe.2018.0010010.3389/fbioe.2018.00100608543130123794 Search in Google Scholar

Koch GW, Sillett CS, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851-854. https://doi.org/10.1038/nature0241710.1038/nature0241715103376 Search in Google Scholar

Korban SS, Sul IW (2007) Micropropagation of coast redwood (Sequoia sempervirens) In: Jain SM, Häggman (eds) Protocols for micropropagation of woody trees and fruits. Springer Verlag, Berlin, pp 23-32 https://doi.org/10.1007/978-1-4020-6352-7_310.1007/978-1-4020-6352-7_3 Search in Google Scholar

Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari M, Sadh RK (2016) Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6:54. https://doi.org/10.1007/s13205-016-0389-710.1007/s13205-016-0389-7475295328330124 Search in Google Scholar

Kruse S, Kolmogorov AI, Pestryakova LA, Herzschuh U (2020) Long-lived larch clones may conserve adaptations that could restrict treeline migration in northern Siberia. Ecololgy and Evolution 10:10017-10030 https://doi.org/10.1002/ece3.666010.1002/ece3.6660752021233005360 Search in Google Scholar

Kullman L (2008) Early postglacial appearance of tree species in northern Scandinavia: review and perspectives. Quaternary Science Reviews 27:2467-2472. https://doi.org/10.1016/j.quascirev.2008.09.00410.1016/j.quascirev.2008.09.004 Search in Google Scholar

Kumar S. Fladung M (2002) Transgene integration in aspen: structures of integration sites and mechanisms of T-DNA integration. Plant J 31: 543-551 https://doi.org/10.1046/j.1365-313x.2002.01368.x10.1046/j.1365-313X.2002.01368.x Search in Google Scholar

Kuser J E, Bailly A, Franclet A, Libby WJ et al (1995) Early results of a range-wide provenance test of Sequoia sempervirens. Forest Genetics Resources, FAO, Rome, No. 23:21-25 Search in Google Scholar

Lachance D, Hamel LP, Pelltier E, Valéro J, Bernier-Cardou M, Chapman K, K Van Frankenhuyzen K, Séguin A (2007) Expression of a Bacillus thuringiensis cry-1Ab gene in transgenic white spruce and its efficacy against the spruce budworm (Choristoneura fumiferana). Tree Genetics & Genomes 3: 53-167 https://doi.org/10.1007/s11295-006-0072-y10.1007/s11295-006-0072-y Search in Google Scholar

Ladics GS, Bartholomaeus A, Bregitzer P, Doerrer NG, Gray A, Holzhauser T, Jordan M, Keese P, Kok E, Macdonald P, Parrott W, Privalle L, Raybound A, Rhee SY, Rice E, Romeis J, Vaughn J, Wal J-M, Glenn K (2015) Genetic basis and detection of unintended effects in genetically modified crop plants. Transgenic Res 24:587-603. https://doi.org/10.1007/s11248-015-9867-710.1007/s11248-015-9867-7450498325716164 Search in Google Scholar

Larkin PJ, Scowcroft WR (1981) Somaclonal variation - a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60: 197-214 https://doi.org/10.1007/bf0234254010.1007/BF0234254024276737 Search in Google Scholar

Lee H, Moon HK, Park SY (2014) Agrobacterium-mediated transformation via somatic embryogenesis system in Korean fir (Abies koreana Will.), a native Korean conifer. Korean J Plant Res 27:242-248 https://doi.org/10.7732/kjpr.2014.27.3.24210.7732/kjpr.2014.27.3.242 Search in Google Scholar

Leva AR, Petruccelli R, Rinaldi LMR (2012) Somaclonal variation in tissue culture: a case study with olive. In: Leva A, Rinaldi LMR (eds) Recent advances in plant in vitro culture, InTech Publishers, pp 123-150 https://doi.org/10.5772/5036710.5772/50367 Search in Google Scholar

Li J, Meilan R, Ma C, Barish M, Strauss SH (2008) Stability of herbicide resistance over eight years of coppice field-grown, genetically engineered poplars. Western J Appl For 23: 89-93. https://doi.org/10.1093/wjaf/23.2.8910.1093/wjaf/23.2.89 Search in Google Scholar

Li JF, Zhang D, Sheen J (2015) Targeted genome editing via the CRISPR-Cas9 technology. In: Alonso JM, Stepanova (eds) Plant functional genomics: methods and protocols. Springer Verlag, New York, pp 239-255 https://doi.org/10.1007/978-1-4939-2444-8_1210.1007/978-1-4939-2444-8_1225757776 Search in Google Scholar

Littell JS, Oneil EE, McKenzie D, Hicke JA, Lutz JA, Norheim RA, Elsner MM (2010) Forest ecosystems, disturbance, and climate change in Washington State, USA. Climate Change 102:129-158 https://doi.org/10.1007/s10584-010-9858-x10.1007/s10584-010-9858-x Search in Google Scholar

Liu C, Xia X, Yin W, Huang L, Zhou J (2006) Shoot regeneration and somatic embryogenesis from needles of redwood (Sequoia sempervirens (D. Don) Endl.). Plant Cell Rep 25:621-628. https://doi.org/10.1007/s00299-006-0120-y10.1007/s00299-006-0120-y16496152 Search in Google Scholar

Liu J, Yang Z, Li W, Yu J, Huang B (2013) Improving cold tolerance through in vitro selection for somaclonal variations in seashore paspalum. J Amer Soc Hort Sci 138:452-460. https://doi.org/10.21273/jashs.138.6.45210.21273/JASHS.138.6.452 Search in Google Scholar

Liu Y, Yu X, Liu S, Peng H, Mijiti A, Zhang H, Ma H (2017) A chickpea NAC-type transcription factor, CarNAC6, confers enhanced dehydration in Aribidopsis. Plant Molecular Biology Reporter 35:83-96 https://doi.org/10.1007/s11105-016-1004-010.1007/s11105-016-1004-0 Search in Google Scholar

Locatelli b, Pavageau c, Pramova E, Di Gregorio M (2015) Integrating climate change mitigation and adaptation in agriculture and forestry: opportunities and trade-offs. WIREs Clim Change 6:585-598 https://doi.org/10.1002/wcc.35710.1002/wcc.357 Search in Google Scholar

Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen H, Steward CN, McAvory R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007) “GM-gene deletor”: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRF recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotech. J. 5:263-274. https://doi.org/10.1111/j.1467-7652.2006.00237.x10.1111/j.1467-7652.2006.00237.x17309681 Search in Google Scholar

Lynch AJJ, Barnes RW, Cambecedes J, Vaillancourt RE (1998) Genetic evidence that Lomatia tasmanica (Proteaceae) is an ancient clone. Aust J Bot 46:25-33 https://doi.org/10.1071/bt9612010.1071/BT96120 Search in Google Scholar

Lynch AJJ, Balmer J (2004) The ecology, phytosociology and stand structure of an ancient endemic plant Lomatia tasmanica (Proteaceae) approaching extinction. Aust. J. Bot 52:619-627. https://doi.org/10.1071/bt0302310.1071/BT03023 Search in Google Scholar

Ma X, Zhu Q, Liu YG (2016) CRISPR/Cas9 platform for genome editing in plants: developments and applications. Molecular Plant 9:961-974 https://doi.org/10.1016/j.molp.2016.04.00910.1016/j.molp.2016.04.00927108381 Search in Google Scholar

Mahi Y, Franklin J, Seddon N, Solan M, Turner MG, Field CB, Knowlton N (2019) Climate change and ecosystems: threats, opportunities and solutions. Phil Trans R Soc B 375:20190104. https://doi.org/10.1098/rstb.2019.010410.1098/rstb.2019.0104701777931983329 Search in Google Scholar

Marchetti C (1977) On geoengineering and Co2 problem. Climate Change 1:59-68 https://doi.org/10.1007/bf0016277710.1007/BF00162777 Search in Google Scholar

Marum L, Rocheta M, Maroco J, Oliveira MM, Miguel C (2009) Analysis of genetic stability at SSR locus during somatic embryogenesis in maritime pine (Pinus pinaster). Plant Cell Rep 28:673-682 https://doi.org/10.1007/s00299-008-0668-910.1007/s00299-008-0668-919153739 Search in Google Scholar

Matemilola S, Salami HA (2020) Net zero emission. In: Idowu SO et al. (eds) Encyclopedia of sustainable management. Springer Nature, Switzerland, pp. 1-6 https://doi.org/10.1007/978-3-030-02006-4_512-110.1007/978-3-030-02006-4_512-1 Search in Google Scholar

May MR, Provance MC, Sanders AC, Ellstrand NC, Ross-Ibarra J (2009) A Pleistocene clone of Palmer’s oak persisting in southern California. PLoSOne 4:e8346. https://doi.org/10.1371/journal.pone.000834610.1371/journal.pone.0008346279639420041136 Search in Google Scholar

McHughen A, Smyth S (2008) US regulatory system for genetically modified [genetically organisms (GMO), rDNA or transgenic] crop cultivars. Plant Biotechnol J 6:2-12. https://doi.org/10.1111/j.1467-7652.2007.00300.x10.1111/j.1467-7652.2007.00300.x17956539 Search in Google Scholar

McKenney DW, Pedlar J, Lawrence K, Moe R, Hutchinson MF (2007) Potential impact of climate change on the distribution of North American trees. Bioscience 57:939-948. https://doi.org/10.1641/b57110610.1641/B571106 Search in Google Scholar

Meason DF, Kennedy SG, Dungey HS (2016) Two New Zealand-based common garden experiments of the range-wide ‘Kuser” clonal collection of Sequoia sempervirens reveal pattern of provenance variation in growth and wood properties. New Forests 47:635-651 https://doi.org/10.1007/s11056-016-9535-710.1007/s11056-016-9535-7 Search in Google Scholar

Melchior GH (1985) Züchtung von Aspen und Hybridaspen und ihre Perspetiven für die Praxis. Allg Forst J Ztg 156:112-122 Search in Google Scholar

Miller ZD, Peralta PN, Mitchell PH, Kelley SS, Chiang VL, Pearson L, Rottmann WH, Cunningham MW, Peszlen IM (2019) Anatomical, physical, and mechanical properties of transgenic loblolly pine (Pinus taeda L.) modified for increased density. Wood and Fiber Sci 51: 1-10 https://doi.org/10.22382/wfs-2019-01810.22382/wfs-2019-018 Search in Google Scholar

Mishra N, Tripathi MK, Tiwari S, Tripathi N, Sapre S, Ahuja A, Tiwari S (2021) Cell suspenstion culture and in vitro screening for drought tolerance in soybean using poly-ethylene glycol. Plants 10:517. https://doi.org/10.3390/plants1003051710.3390/plants10030517800025933801940 Search in Google Scholar

Mitton JB, Grant MC (1996) Genetic variation and the natural history of quaking aspen. Bioscience 46:25-31. https://doi.org/10.2307/131265210.2307/1312652 Search in Google Scholar

Mock KE, Rowe CA, Hooten MB, DeWoody J, Hipkin VD (2008) Clonal dynamics in western Norrth American aspen (Populus tremuloides). Mol Ecol 17:4827-4844. https://doi.org/10.1111/j.1365-294x.2008.03963.x10.1111/j.1365-294X.2008.03963.x Search in Google Scholar

Monleon VJ, Lintz HE (2015) Evidence of tree species range shifts in a complex landscape. PLoSONE 10: e0118069 https://doi.org/10.1371/journal.pone.011806910.1371/journal.pone.0118069 Search in Google Scholar

Montalbán IA, Garciá-Mendiguren O, Goicoa T, Ugarte MD, Moncaleán P (2014) Can we induce tolerance to stress in Pinus radiata somatic embryos? In: Park YS, Bonga JM (eds) Proceedings of the IUFRO WP 2.09.02, conference on Woody plant production integrating genetic and vegetative technologies. Vito-ria-Gasteiz, Spain, pp 22-28 Search in Google Scholar

Movahedi A, Zang J, Gao P, Yang Y, Wang L, Yin T, Kadhodaei S, Ebrahimi M, Zhuge Q (2015) Expression of chickpea CarNAC3 gene enhances salinity and drought tolerance in poplars. Plant Cell Tissue and Organ culture 120:141-154 https://doi.org/10.1007/s11240-014-0588-z10.1007/s11240-014-0588-z Search in Google Scholar

Nagmani R, Bonga JM (1985) Embryogenesis in subculture callus of Larix decidua. Can J For Res 15:1088-1091. https://doi.org/10.1139/x85-17710.1139/x85-177 Search in Google Scholar

Nave LE, Walters BF, Hofmeister KL, Perry CH, Mishra U, Domke GM, Swan-ston CW (2019) The role of reforestation in carbon sequestration. New Forests 50:115-137. https://doi.org/10.1007/s11056-018-9655-310.1007/s11056-018-9655-3 Search in Google Scholar

Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nature Reviews Genetics 12:111-122. https://doi.org/10.1038/nrg293110.1038/nrg2931 Search in Google Scholar

Oberg L, Kullman L (2011) Ancient subalpine clonal spruces (Picea abies): sources of postglacial vegetation history in the Swedish Scandes. Arctic 64:183-196. https://doi.org/10.14430/arctic409810.14430/arctic4098 Search in Google Scholar

O’Gorman PA and Schneider T (2009) The extreme basis for increase in precipitation extremes in simulations of the 21st-century climate change. Proc Natl Acad Sci USA 106:14773-14777. https://doi.org/10.1073/pnas.090761010610.1073/pnas.0907610106 Search in Google Scholar

O’Hara KL, Cox LE, Nikolaeva S, Bauer JJ, Hedges R (2017) Regeneration dynamic of coast redwood, a sprouting conifer species: a review with implications for management and restoration. Forests 8:144 https://doi.org/10.3390/f805014410.3390/f8050144 Search in Google Scholar

Olson DF, Roy DF, Walters GA (1990) Sequoia sempervirens (D. Don) Endl. Redwood. In: Burns RM, Honkala BH (eds) Silvics of North America. Vol 1. Conifers. Agriculture Handbook 654. US Department of Agriculture, Forest Service, Washington DC, pp 541-551 Search in Google Scholar

Ostry ME, Ward KT (2003) Field performance of Populus expressing somaclonal variation in resistance to Septoria musiva. Plant Sci 164:1-8 https://doi.org/10.1016/s0168-9452(02)00282-010.1016/S0168-9452(02)00282-0 Search in Google Scholar

Pardos JA, Ahuja MR, Rossello RE (1994) Biotechnology of trees. Investigacion Agraria, Sistemas y recursos Forestales, INIA, Madrid, Spain Search in Google Scholar

Park YS, Bonga JM, Park YS, Moon HK (2010) Proceedings of the IUFRO WP 2.0902, conference on Advances of trees and its application for the future forests and world plantations. Suwon, Republic of Korea Search in Google Scholar

Park YS, Bonga J (2012) Proceedings of the IUFRO WP 2.09.02, conference on “Integrating vegetative propagation, biotechnologies and genetic improvement for tree production and sustainable forest management. Brno, Czech Republic. Search in Google Scholar

Park YS, Bonga JM (2014) Proceedings of the IUFRO WP 2.09.02, conference on Woody plant production integrating genetic and vegetative technologies. Vitoria-Gasteiz, Spain Search in Google Scholar

Park YS, Bonga JM, Moon HK (2016) Vegetative propagation of forest trees. National Institute of Forest Sciences (NIFoS), Korea Search in Google Scholar

Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics 37:637-669 https://doi.org/10.1146/annurev.ecolsys.37.091305.11010010.1146/annurev.ecolsys.37.091305.110100 Search in Google Scholar

Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37-42 https://doi.org/10.1038/nature0128610.1038/nature0128612511946 Search in Google Scholar

Pearson RG, Stanton JC, Shoemaker KT, Aiello-Lammens ME, Ersts PJ, Horning N, Fordham DA, Raxworthy CJ, Ryu HY, McNees J, Akcakaya R (2014) Life history and spatial traits predict extinction risk due to climate change. Nature Climate Change 4:217-221. https://doi.org/10.1038/nclimate211310.1038/nclimate2113 Search in Google Scholar

Pilate G, Allona L, Boerjan W, Déjardin A, Fladung M, Gallardo F, Häggmann H, Jansson S, Van Acker R, Halpin C (2016) Lessons from 25 years of GM tree field trials in Europe and prospects for the future. In: Vettori C, Gallardo F, Häggman H, Kazana V, Migliaci F, Pilate G, Fladung M (eds) Biosafety of forest transgenic trees. Springer Verlag, Dordrecht, pp 67-100 https://doi.org/10.1007/978-94-017-7531-1_410.1007/978-94-017-7531-1_4 Search in Google Scholar

Porth I, El-Kassaby YA (2014) Current status of the development of genetically modified (GM) forest trees world-wide: a comparison with the development of other GM plants in agriculture. CAB Reviews 9, 008, pp 1-12 https://doi.org/10.1079/pavsnnr2014900810.1079/PAVSNNR20149008 Search in Google Scholar

Prevéy JS, Rixen C, Rüger N, Hoye T, Bjorkman AD, Meys-Smith IH, Elmendorf SC, Ashton IW, Cannome N, Chrisholm CL, Clark K, Cooper RJ, Eleberlin B, Fosaa AM, Henry GHR, Hollister RD, Jónsdóttir IV, Klandreud K, Koop CW, Lévesque E, Mauritz M, Molau U, Natali SM, Oberbauer SF, Panchen ZA, Post E, Rumpf SB, Schmidt NM, Shuur E, Semenchuk PR, Smith JG, Sudig KN, Totland O, Troxler T, Venn S, Wahren C-H, Welker JM, Wipf S (2019) Warming shortens flowering seasons of tundra plant communities. Nature Ecology and Evolution 3:45-52. https://doi.org/10.1038/s41559-018-0745-610.1038/s41559-018-0745-630532048 Search in Google Scholar

Puchta H (2017) Applying CRISPR/Cas9 for genome engineering in plants: the best is yet to come. Current Opinion Plant Biol 36:1-8 https://doi.org/10.1016/j.pbi.2016.11.01110.1016/j.pbi.2016.11.01127914284 Search in Google Scholar

Quirk J, McDowell NG, Leake JR, Hudson PJ, Beerling DJ (2013) Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under Cenozoic atmospheric carbon dioxide starvation. Am J Bot 100:582-591. https://doi.org/10.3732/ajb.120043510.3732/ajb.120043523425559 Search in Google Scholar

Ramawat KG, Mérillon JM, Ahuja MR (2014) Tree Biotechnology. CRC Press, Boca Raton. https://doi.org/10.1201/b1671410.1201/b16714 Search in Google Scholar

Rehfeldt GE, Jaquish BC, Sáenz-Romero C, Joyce DG, Leites LP, St Clair, JB, López-Upton (2014) Comparative genetic response to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: restoration. For Ecol Manage 324:147-157. https://doi.org/10.1016/j.foreco.2014.02.04010.1016/j.foreco.2014.02.040 Search in Google Scholar

Richardson DM, Hellermann JJ, McLachlan JS, Sax DF, Schwartz MW, Gonzalez P, Brennan EJ, Camancho A, Root TL, Sala OE, Schneider SH, Ashe DM, Clark JR, Early R, Etterson JR, Fielder ED, Gill GL, Minteer BA, Polasky S, Safford HD, Thompson AR, Vellend M (2009) Multidimensional evaluation of managed relocation. Proc Natl Acad Sci USA 106:9721-9724 https://doi.org/10.1073/pnas.090232710610.1073/pnas.0902327106269403519509337 Search in Google Scholar

Rocky Mountain Tree-Ring Research (2016) Oldlist database of ancient trees. www.rmtrr.org/oldlist.html Search in Google Scholar

Robock A (2014) Stratospheric aerosol geoengineering. In: Hester RE, Harrison RM (eds) Geoengineering of climate change, Royle Society of Chemistry, London, pp 162-185. https://doi.org/10.1039/9781782621225-0016210.1039/9781782621225-00162 Search in Google Scholar

Rogelj J, Gerden O, Cowie A, Reisinger A (2021) Three ways to improve net-zero emission targets. Nature 591:365-36810.1038/d41586-021-00662-333727725 Search in Google Scholar

Román-Palacios C, Wiens J (2020) Recent response to climate change reveal the drivers of species extinction and survival. Proc Natl Acad Sci USA 117:4211-4217. https://doi.org/10.1073/pnas.191300711710.1073/pnas.1913007117704914332041877 Search in Google Scholar

Sangle PM, Satpute SB, Khan FS, Rode NS (2015) Impact of climate change on insects. Trends Bioscience 8:3579-3582 Search in Google Scholar

Schmuelling T, Schell J, Spena A (1988) Single gene from Agrobacterium rhizo-genes influences plant development. EMBO Journal 7:2621-2629 https://doi.org/10.1002/j.1460-2075.1988.tb03114.x10.1002/j.1460-2075.1988.tb03114.x Search in Google Scholar

Schwartz MW, Iverson LR, Prasad AM, Matthews SN, O’Connor RJ (2006) Predicting extinctions as a result of climate change. Ecology 87:1611-1615 https://doi.org/10.1890/0012-9658(2006)87[1611:peaaro]2.0.co;2 Search in Google Scholar

Schwartz MW, Hellmann JJ, McLachlan JM, Sax DF, Borewitz JO, Brennan J, Camacho AE, Caballos G, Clark JR, Doremus H, Early R, Etterson JR, Fielder D, Gill JL, Gonzalez P, Green N, Hannah L, Jamieson DE, Javeline D, Minteer BA, Odenbaugh J, Polasky S, Richardson DM, Root, TL, Safford HD, Sala O, Schneider SH, Thompson AR, Williams JW, Vellend M, Vitti P, Zellmer S (2012) Managed relocation: integrating the scientific, regulatory, and ethical challenges. Bioscience 62:732-742. https://doi.org/10.1525/bio.2012.62.8.610.1525/bio.2012.62.8.6 Search in Google Scholar

Schulman E (1958) Bristlecone pine, oldest known living thing. National Geographics 113:355-372 Search in Google Scholar

Sederoff, R (2007) Regulatory science in forest biotechnology. Tree Genetics & Genomes 3: 71-74. https://doi.org/10.1007/s11295-006-0081-x10.1007/s11295-006-0081-x Search in Google Scholar

Seppänen S-K, Syrjälä L, Von Weissenberg K, Teeri TH, Paajanen L, Pappinen A (2004) Antifungal activity of stilbenes in vitro bioassays and in transgenic Populus expressing a gene encoding pinosylvin synthase. Plant Cell Rep 22:584-593. https://doi.org/10.1007/s00299-003-0728-010.1007/s00299-003-0728-014714142 Search in Google Scholar

Skendvžić S, Zovko M, Živković IP, Lešić V, Lemić D (2021) The impact of climate change on agricultural insect pests. Insects 12:240 doi.org/10.3390/insects12050440. https://doi.org/10.3390/insects1205044010.3390/insects12050440815087434066138 Search in Google Scholar

Sillett SC, van Pelt R, Carroll AL, Kramer RD, Ambrose AR, Trask D (2015) How do tree structure and old age affect growth potential of California redwoods? Ecological Monographs 85:181-212. https://doi.org/10.1890/14-1016.110.1890/14-1016.1 Search in Google Scholar

Smouse PE, Robledo-Arnuncio JJ, González-Martínez SC (2007) Implications of natural propagule flow for containment of genetically modified trees. Tree Genetics & Genomes 3: 141-152 https://doi.org/10.1007/s11295-006-0075-810.1007/s11295-006-0075-8 Search in Google Scholar

Sommer HE, Brown CL, Kormanik PP (1975) differentiation of plantlets in long-leaf pine (Pinus palustris Mill.) tissue cultured in vitro. Bot Gaz 136:196-200 https://doi.org/10.1086/33680210.1086/336802 Search in Google Scholar

Spena A, Schmuelling T, Koncz G, Schell J (1987) Independent and synergistic activity of rol A, B and C in stimulating abnormal growth in plants. EMBO Journal 6:3891-3899. https://doi.org/10.1002/j.1460-2075.1987.tb02729.x10.1002/j.1460-2075.1987.tb02729.x Search in Google Scholar

Staudt A, Leidner AK, Howard J, Brauman KA, Dukes JS, Hansen L, Paukert G, Sabo J, Solórzano LA (2013) The added complications of climate change: understanding and managing biodiversity and ecosystems. Front Ecol Environ 11:494-501. https://doi.org/10.1890/12027510.1890/120275 Search in Google Scholar

Stebbins GL (1948) The chromosomes and relationship of Metasequoia and Sequoia. Science 108: 95-98. https://doi.org/10.1126/science.108.2796.9510.1126/science.108.2796.9517808724 Search in Google Scholar

Strauss SH, Rottmann WH, Brunner AM, Sheppard LA (1995) Genetic engineering of reproductive sterility in forest trees. Mol Breed 1:5-26 https://doi.org/10.1007/bf0168208610.1007/BF01682086 Search in Google Scholar

Strauss SH, Schmitt M, Sedjo R (2009a) Forest scientists views on regulatory obstacles to research and development of transgenic forest biotechnology. J For 107:350357 Search in Google Scholar

Strauss SH, Tan H, Boerjan W, Sedjo R (2009b) Strangled at birth? Forest biotechnology and the convention on biological diversity. Nat Biotechnol 27:519-527 https://doi.org/10.1038/nbt0609-51910.1038/nbt0609-51919513052 Search in Google Scholar

Sukegawa S, Sika H, Toki S (2021) Plant genome editing ever more precise and wide reaching. The Plant Journal. https://doi.org/10.1111/tpj.1523310.1111/tpj.1523333730414 Search in Google Scholar

Sul IW, Korban SS (2005) Direct shoot organogenesis from needles of three geno-types of Sequoia semperviren. Plant Cell Tissue Org 80:353-358 https://doi.org/10.1007/s11240-004-1365-110.1007/s11240-004-1365-1 Search in Google Scholar

Takolander A, Hickler T, Meller L, Cabeza A (2019) Comparing future shifts in tree species distributions across Europe projected by statistical and dynamic process-based models. Regional Enviromental Change 19:251-266 https://doi.org/10.1007/s10113-018-1403-x10.1007/s10113-018-1403-x Search in Google Scholar

Tang W, Newton RJ (2003) Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Rep 22:1-15 https://doi.org/10.1007/s00299-003-0670-110.1007/s00299-003-0670-112827443 Search in Google Scholar

Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145-148. https://doi.org/10.1038/nature0212110.1038/nature0212114712274 Search in Google Scholar

Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Peterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species distributions: future challenges. Perspectives in Plant Ecol Evol Syst 9:137-152 https://doi.org/10.1016/j.ppees.2007.09.00410.1016/j.ppees.2007.09.004 Search in Google Scholar

Tikkinin M, Varis S, Aronen T (2018) Development of somatic embryo maturation and growing techniques of Norway spruce emblings towards large-scale field testing.Forests 9:325. https://doi.org/10.3390/f906032510.3390/f9060325 Search in Google Scholar

Traenkner C, Lrhmann S, Hoenicka H, Hanke MV, Fladung M, Lenhardt D, Dunemann F, Gau AE, Schlangen K, Malnoy M, Flachowsky H (2010) Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309-1324 https://doi.org/10.1007/s00425-010-1254-210.1007/s00425-010-1254-220811751 Search in Google Scholar

Tremblay L, Levasseur C, Tremblay FM (1999) Frequency of somaclonal variation in plants of black spruce (Picea mariana, Pinaceae) and white spruce (Picea glauca, Pinaceae) derived from somatic embryogenesis and identification of some factors involved in genetic instability. Am J Bot 86:1373-1381 https://doi.org/10.2307/265692010.2307/2656920 Search in Google Scholar

Trenberth KE (2011) Changes in precipitation with climate change. Climate Research 47:123-138. https://doi.org/10.3354/cr0095310.3354/cr00953 Search in Google Scholar

Trontin JF, Harvengt L, Garin E, Lopez-Vernaza M, Arancio L, Hoebeke J, Canlet F, Pâques M (2002) Towards genetic engineering of maritime pine (Pinus pin-aster Ait). Am For Sci 59:687-697. https://doi.org/10.1051/forest:200205710.1051/forest:2002057 Search in Google Scholar

Trontin JF, Walter C, Klimaszewska K, Park, YS, Lelu-Walter MA (2007) Recent progress in genetic transformation of four Pinus spp. Transgenic Plant Journal 1:314-329 Search in Google Scholar

Trontin JF, Teyssier C, Morel A, Harvengt L, Lelu-Walter (2016) Prospects of new variety development through somatic embryogenesis in maritime pine. In: Park YS, Bonga JM, Moon HK (eds) Vegetative propagation offorest trees. National Instituteb of Forest Sciences, Suwon, Korea, pp 572-606 Search in Google Scholar

Tsai CJ, Xue LJ (2015) CRISPRing in the woods. GM Crops & Food 6:206-215 https://doi.org/10.1080/21645698.2015.109155310.1080/21645698.2015.1091553503321926357840 Search in Google Scholar

Tycko J, Myer VE, Dsu PD (2016) Methods for optimizing CRISPR-Cas9 editing specificity. Mol Cell 63:355-370. https://doi.org/10.1016/j.molcel.2016.07.00410.1016/j.molcel.2016.07.004497669627494557 Search in Google Scholar

Uddenberg D, Abrahamsson M, von Arnold S (2016) Overexpression of PaHAP3A stimulates differentiation of ectopic embryos from maturing somatic embryos of Norway spruce. Tree Genetcs & Genomes 12:18 https://doi.org/10.1007/s11295-016-0974-210.1007/s11295-016-0974-2 Search in Google Scholar

Urban MC (2015) Accelerating extinction risk from climate change. Science 348:571-573. https://doi.org/10.1126/science.aaa498410.1126/science.aaa498425931559 Search in Google Scholar

USDA (2019) Revision to USDA-APHIS 7 CFR part 340 regulations governing the importation, interstate movement, and environmental release of certain genetically engineered organisms. Draft programmatic environmental impact statement May, 2019. Washington, DC, pp. 1-449 Search in Google Scholar

USDA (2020) Movement of certain genetically engineered organisms. Federal Register 85, No. 96, May 18, 2020/ (Rules and Regulations) Search in Google Scholar

Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol. 145: 1129-1143. https://doi.org/10.1104/pp.107.10669010.1104/pp.107.106690215172918056863 Search in Google Scholar

Vettori C, Gallardo F, Häggman H, Kazana V, Migliaci F, Pilate G, Fladung M (2016) Biosafety of forest transgenic trees. Springer Verlag, Dordrecht https://doi.org/10.1007/978-94-017-7531-110.1007/978-94-017-7531-1 Search in Google Scholar

Wagner A, Phillips L, Narayan RD, Moody JM, Geddes B (2005) Gene silencing studies in the gymnosperm Pinus radiata. Plant Cell Rep 24: 95-102 https://doi.org/10.1007/s00299-004-0911-y10.1007/s00299-004-0911-y15662500 Search in Google Scholar

Wani SH, Sah SK, Sanghera G, Hussain W (2016) Genetic engineering for cold stress tolerance in crop plants. Advances in Genome Science 4:173-201 https://doi.org/10.2174/978168108173111604001010.2174/9781681081731116040010 Search in Google Scholar

Wann SR, Einspahr DW (1986) Reliable plantlet formation from seedling ex-plants of Populus tremuloides (Michx.). Silvae Genet 35:19-24 Search in Google Scholar

Wear DN, Abt RC, Dixon E, Singh N (2014) Projecting potential adaptation of genetically engineered freeze-tolerant Eucalyptus in the United States. Forest Sci 61. https://doi.org/10.5849/forsci.14-08910.5849/forsci.14-089 Search in Google Scholar

White TL, Adams WT, Neale DB (2007) Forest genetics. CABI International Publishing, Cambridge, MA. https://doi.org/10.1079/9781845932855.000010.1079/9781845932855.0000 Search in Google Scholar

Williamson P, Wallace DWR, Law CS, Boyd PW, Collos Y, Croot P, Denman K, Riebesell U, Takeda S, Vivian C (2012) Ocean fertilization for geoengineering: a review of effectiveness, environmental impacts and emerging governance. Process Safety Environ Prot 90:475-488 https://doi.org/10.1016/j.psep.2012.10.00710.1016/j.psep.2012.10.007 Search in Google Scholar

Winton LL (1968) Plantlets from aspen tissue culture. Science 160:1234-1235 https://doi.org/10.1126/science.160.3833.123410.1126/science.160.3833.12345648261 Search in Google Scholar

Wisniewski M, Nassuth A, Teulieres C, Marque C, Rowland J, Cao PB, Brown A (2014) Genomics of cold hardiness in woody plants. Crit Rev Plant Sci 33:92-124. https://doi.org/10.1080/07352689.2014.87040810.1080/07352689.2014.870408 Search in Google Scholar

Zhang Z, Moore JC, Huisingh, Zhao Y (2015) Review of geoengineering approaches to mitigating climate change. J Cleaner Production 103:898-907 https://doi.org/10.1016/j.jclepro.2014.09.07610.1016/j.jclepro.2014.09.076 Search in Google Scholar

Zhou X, Jacobs TB, Xue LJ (2015) Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol 208:298-301 https://doi.org/10.1111/nph.1347010.1111/nph.1347025970829 Search in Google Scholar

Zobel B, Talbert J (1984) Applied forest tree improvement. John Wley and Sons, New York Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo