1. bookVolume 32 (2014): Issue 3 (September 2014)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Low-temperature synthesis of zeolite from perlite waste — Part I: review of methods and phase compositions of resulting products

Published Online: 17 Oct 2014
Volume & Issue: Volume 32 (2014) - Issue 3 (September 2014)
Page range: 503 - 513
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

In this paper a review of the recent studies on the synthesis of zeolites from expanded perlite under hydrothermal conditions is presented. Attention is paid to possible outcomes of synthesis from low cost glass material, such as perlite. The study also investigates the phase composition of zeolitic materials obtained by modification of by-product derived from an expanded perlite production process. The synthesis was made using the hydrothermal method with sodium hydroxide under autogenous pressure at a temperature below 100 °C for 1 to 72 h. It was possible to obtain a zeolitic material at a temperature as low as 60 °C using 4.0 M NaOH. The X-ray diffraction pattern showed the biggest peak intensity of zeolite X with 4.0 M NaOH at the temperature of 70 °C. During synthesis at higher temperature zeolite Na-P1 (with 3.0 M NaOH at 90 °C) and hydroxysodalite (with 5.0 M NaOH at 90 °C) were obtained.

Keywords

[1] Breck D.W., Zeolite Molecular Sieves, John Wiley & Sons, New York — London — Sydney — Toronto, 1974. Search in Google Scholar

[2] Colella C., Natural zeolites, in: Čejka J., Bekkum H. (Eds.), Zeolites and ordered mesoporous materials: Progress and prospects, Studies in Surface Science and Catalysis 157, Elsevier, 2005, p. 13. http://dx.doi.org/10.1016/S0167-2991(05)80004-710.1016/S0167-2991(05)80004-7Search in Google Scholar

[3] Gottardi G., Galli E. (Eds.), Natural Zeolites, Mineral and Rocks 18, Springer-Verlag, Berlin Heidelberg, 1985. 10.1007/978-3-642-46518-5Search in Google Scholar

[4] Barrer R.M., White E.A.D., J. Chem. Soc. (Resumed), (1952), 1561. 10.1039/jr9520001561Search in Google Scholar

[5] Zhdanov S.P., Khvoshchev S.S., Feoktistova N.N., Synthetic Zeolites, Gordon and Breach Science, 1990, p. 1. Search in Google Scholar

[6] Williams C.D., Zeolites, in: King R.B., Encyclopedia of Inorganic Chemistry, JohnWiley & Sons, Athens, USA, 1994, p. 4363. Search in Google Scholar

[7] Georgiev D., Bogdanov B., Angelova K., Markovska I., Hristov Y., Synthetic zeolites — structure, classification, current trends in zeolite synthesis. Review, International Science Conference, 4–5.06.2009, Stara Zagora, Bulgaria. Search in Google Scholar

[8] www.perlite.info. Search in Google Scholar

[9] www.schundler.com. Search in Google Scholar

[10] Noh J.W., Boles J.R., Clay. Clay. Miner., 37 (1989), 47. http://dx.doi.org/10.1346/CCMN.1989.037010610.1346/CCMN.1989.0370106Search in Google Scholar

[11] Khodabandeh S., Davis M.E., Micropor. Mater., 9 (1997), 161. http://dx.doi.org/10.1016/S0927-6513(96)00100-910.1016/S0927-6513(96)00100-9Search in Google Scholar

[12] Gonthier S., Gora L., Güray I., Thompson R.W., Zeolites, 13 (1993), 414. http://dx.doi.org/10.1016/0144-2449(93)90113-H10.1016/0144-2449(93)90113-HSearch in Google Scholar

[13] Barth-wirsching U., Höller H., Klammer D., Konrad B., Miner. Petrol., 48 (1993), 275. http://dx.doi.org/10.1007/BF0116310410.1007/BF01163104Search in Google Scholar

[14] Dyer A., Tangkawanit S., Rangsriwatananon K., Micropor. Mesopor. Mat., 75 (2004), 273. http://dx.doi.org/10.1016/j.micromeso.2004.07.00710.1016/j.micromeso.2004.07.007Search in Google Scholar

[15] Kongkachuichay P., Lohsoontorn P., Science Asia, 32 (2006), 13. http://dx.doi.org/10.2306/scienceasia1513-1874.2006.32.01310.2306/scienceasia1513-1874.2006.32.013Search in Google Scholar

[16] Tangkawanit S., Rangsriwatananon K., Suranaree J. Sci. Technol., 12/1 (2005), 61. Search in Google Scholar

[17] Gualtieri A.F., Phys. Chem. Miner., 28 (2001), 719. http://dx.doi.org/10.1007/s00269010019710.1007/s002690100197Search in Google Scholar

[18] Christidis G.E., Phapaliars I., Kontopoulos A., Appl. Clay Sci., 15 (1999), 305. http://dx.doi.org/10.1016/S0169-1317(99)00007-110.1016/S0169-1317(99)00007-1Search in Google Scholar

[19] Tangkawanit S., Synthesis of zeolites from perlite and study of their ion exchange properties, Suranaree University of Technology, 2004. Search in Google Scholar

[20] Rujiwatra A., Mater. Lett., 58 (2004), 2012. http://dx.doi.org/10.1016/j.matlet.2003.12.01510.1016/j.matlet.2003.12.015Search in Google Scholar

[21] Christidis G.E., Papantoni H., Open Mineral. J., 2 (2008), 1. http://dx.doi.org/10.2174/1874456700080201000110.2174/18744567000802010001Search in Google Scholar

[22] Phosawat W., Chareonpanich M., Sudasna-naayudthya P., Production of Zeolite Y from perlite, online: http://kucon.lib.ku.ac.th/. Search in Google Scholar

[23] Christidis G.E., Galani K., Markopoulos T., Synthesis of high added value zeolites from perlite and expanded perlite waste materials, in: Scott P.W., Bristow C.M. (Eds.), Industrial Minerals and Extractive Industry Geology, The Geological Society Publishing House, UK 2002, p. 345. Search in Google Scholar

[24] Psycharis V., Perdikatsis V., Christidis G., Crystal structure and Rietveld refinement of zeolite A synthesized from fine-grained perlite waste materials, Bulletin of the Geological Society of Greece 36 — Proceedings of the 10th International Congress, Thessaloniki, April 2004, p. 121. 10.12681/bgsg.16591Search in Google Scholar

[25] Burriesci N., Crisafulli M.L., Saija L.M., Mater. Lett., 2/1 (1983), 74. http://dx.doi.org/10.1016/0167-577X(83)90038-110.1016/0167-577X(83)90038-1Search in Google Scholar

[26] Kawano M., Tomita K., Clay. Clay Miner., 45/3 (1997), 365. http://dx.doi.org/10.1346/CCMN.1997.045030710.1346/CCMN.1997.0450307Search in Google Scholar

[27] Hawkins D.P., Clay. Clay Miner., 29/5 (1981), 331. http://dx.doi.org/10.1346/CCMN.1981.029050310.1346/CCMN.1981.0290503Search in Google Scholar

[28] Burriesci N., Crisafulli M.L., Giordano N., Bart J.C.J., Polizzotti G., Zeolites, 4/4 (1984), 384. http://dx.doi.org/10.1016/0144-2449(84)90016-210.1016/0144-2449(84)90016-2Search in Google Scholar

[29] Moirou A., Vaxevanidou A., Christidis G.E., Paspaliaris I., Clay. Clay Miner., 48/5 (2000), 563. http://dx.doi.org/10.1346/CCMN.2000.048050910.1346/CCMN.2000.0480509Search in Google Scholar

[30] Tangkawanit S., Rangsriwatananon K., Dyer A., Micropor. Mesopor. Mat., 79 (2005), 171. http://dx.doi.org/10.1016/j.micromeso.2004.10.04010.1016/j.micromeso.2004.10.040Search in Google Scholar

[31] Faghihian H., Kamali M., Int. J. Environ. Pollut., 19/6 (2003), 557. 10.1504/IJEP.2003.004347Search in Google Scholar

[32] Ciciszwili G.W., Andronikaszwili T.G., Kirow G.N., Flizowa L.D., Zeolity naturalne (in Polish), WNT, Warszawa, 1990. Search in Google Scholar

[33] Wirsching U., Clay. Clay Miner., 29 (1981), 171. http://dx.doi.org/10.1346/CCMN.1981.029030210.1346/CCMN.1981.0290302Search in Google Scholar

[34] Khodabandeh S., Davis M.E., Chem. Commun., (1996), 1205. 10.1039/cc9960001205Search in Google Scholar

[35] Dwyer J., Millward D., O’MALLEY P.J., Araya A., Corma A., Fornes V., Martinez A., J. Chem. Soc., Faraday Trans., 86/6 (1990), 1001. http://dx.doi.org/10.1039/ft990860100110.1039/ft9908601001Search in Google Scholar

[36] Novembre D., di Sabatino B., Gimeno D., Pace C., Clay Miner., 46 (2011), 339. http://dx.doi.org/10.1180/claymin.2011.046.3.33910.1180/claymin.2011.046.3.339Search in Google Scholar

[37] Fernández-Jiménez A., Palomo A., Micropor. Mesopor. Mat., 86 (2005), 207. http://dx.doi.org/10.1016/j.micromeso.2005.05.05710.1016/j.micromeso.2005.05.057Search in Google Scholar

[38] Cundy C.S., Cox P.A., Micropor. Mesopor. Mat., 82 (2005), 1. http://dx.doi.org/10.1016/j.micromeso.2005.02.01610.1016/j.micromeso.2005.02.016Search in Google Scholar

[39] Mozgawa W., J. Mol. Struct., 596 (2001), 129. http://dx.doi.org/10.1016/S0022-2860(01)00741-410.1016/S0022-2860(01)00741-4Search in Google Scholar

[40] Mcmillan P., Piriou B., Navrotsky A., Geochim. Cosmochim. Ac., 46 (1982), 2021. http://dx.doi.org/10.1016/0016-7037(82)90182-X10.1016/0016-7037(82)90182-XSearch in Google Scholar

[41] Wilson S.T., Templating in molecular sieve synthesis, in: Robson H. (ed.), Verified syntheses of zeolitic materials, Elsevier, Amsterdam — London — New York — Oxford — Paris — Shannon — Tokyo, 2001, p. 27. http://dx.doi.org/10.1016/B978-044450703-7/50102-210.1016/B978-044450703-7/50102-2Search in Google Scholar

[42] Querol X., Moreno N., Umaña J.C., Alastuey A., Hernández E., López-Soler A., Plana F., Int. J. Coal Geol., 50 (2002), 413. http://dx.doi.org/10.1016/S0166-5162(02)00124-610.1016/S0166-5162(02)00124-6Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo