1. bookVolume 32 (2014): Issue 3 (September 2014)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Fabrication and characterization of compositionally graded Bi1−x GdxFeO3 thin films

Published Online: 17 Oct 2014
Volume & Issue: Volume 32 (2014) - Issue 3 (September 2014)
Page range: 498 - 502
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

An undoped BiFeO3 thin film, Gd doped Bi0.95Gd0.05FeO3 thin film with a constant composition, Gd up-graded doped Bi1−x GdxFeO3 and Gd down-graded doped Bi1−x GdxFeO3 thin films were successfully grown on Pt (111)/Ti/SiO2/Si (100) substrates using a sol-gel and spin coating technique. The crystal structure, ferroelectric and dielectric characteristics as well as the leakage currents of these samples were thoroughly investigated. The XRD (X-Ray Diffraction) patterns indicate that all these thin films consist of solely perovskite phase with polycrystalline structure. No other secondary phases have been detected. Clear polarization-electric field (P-E) hysteresis loops of all these thin films demonstrate that the incorporation of Gd3+ into the Bi site of BFO thin film have enhanced the ferroelectric performance of pure BiFeO3 thin film, and the Gd down-graded doped Bi1−x GdxFeO3 thin film has the best ferroelectric properties. Compared to other thin films, the optimal ferroelectric behavior of the Gd down-graded doped Bi1−x GdxFeO3 thin film results from its large dielectric constant, low dissipation factor and low leakage current.

Keywords

[1] Hill N.A., J. Phys. Chem. B, 104 (2000), 6694. http://dx.doi.org/10.1021/jp000114x10.1021/jp000114xSearch in Google Scholar

[2] Fiebig M, Lottermoser T., Fröhlich D., Goltsev A.V., Pisarev R.V., Nature, 419 (2002), 818. http://dx.doi.org/10.1038/nature0107710.1038/nature0107712397352Search in Google Scholar

[3] Eerenstein W, Mathur N.D., Scott J.F., Nature, 442 (2006), 759. http://dx.doi.org/10.1038/nature0502310.1038/nature0502316915279Search in Google Scholar

[4] Qi X.D., Dho J., Tomov R., Blamire M.G., Macmanus-Driscoll J.L., Appl. Phys. Lett., 86 (2005), 062903. http://dx.doi.org/10.1063/1.186233610.1063/1.1862336Search in Google Scholar

[5] Wang Y.P., Zhou L., Zhang M.F., Chen X.Y., Liu J.M., Liu Z.G., Appl. Phys. Lett., 84 (2004), 1731. http://dx.doi.org/10.1063/1.166761210.1063/1.1667612Search in Google Scholar

[6] Pabst G.W., Martin L.W., Ying-Hao C., Ramesh R., Appl. Phys. Lett., 90 (2007), 072902. http://dx.doi.org/10.1063/1.253566310.1063/1.2535663Search in Google Scholar

[7] Singh S.K., Ishiwara H., Maruyama K., Appl. Phys. Lett., 88 (2006), 262908. http://dx.doi.org/10.1063/1.221881910.1063/1.2218819Search in Google Scholar

[8] Kawae T., Terauchi Y., Tsuda H., Kumeda M., Morimoto A., Appl. Phys. Lett., 94 (2009), 112904. http://dx.doi.org/10.1063/1.309840810.1063/1.3098408Search in Google Scholar

[9] Cheng Z.X., Wang X.L., Dou S.X., Phys. Rev. B, 77 (2008), 092101. http://dx.doi.org/10.1103/PhysRevB.77.09210110.1103/PhysRevB.77.092101Search in Google Scholar

[10] Pradhan S.K., Das J., Rout P.P., Das S.K., Mishra D.K., Sahu D.R., Pradhan A.K., Srinivasu V.V., Nayak B.B., Verma S., Roul B.K., J. Magn. Magn. Mater., 322 (2010), 3614. http://dx.doi.org/10.1016/j.jmmm.2010.07.00110.1016/j.jmmm.2010.07.001Search in Google Scholar

[11] Pradhan S.K., Roul B.K., J. Phys. Chem. Solids, 72 (2011), 1180. http://dx.doi.org/10.1016/j.jpcs.2011.07.01710.1016/j.jpcs.2011.07.017Search in Google Scholar

[12] Pradhan S.K., Das J., Rout P.P., Das S.K., Samantray S., Mishra D.K., Sahu D.R., Pradhan A.K., Zhang K., Srinivasu V.V., Roul B.K., J. Alloy. Compd., 509 (2011), 2645. http://dx.doi.org/10.1016/j.jallcom.2010.11.12910.1016/j.jallcom.2010.11.129Search in Google Scholar

[13] Yuan G.L., Or S.W., Wang Y.P., Liu Z.G., Liu J.M., Solid State Commun., 138 (2006), 76. http://dx.doi.org/10.1016/j.ssc.2006.02.00510.1016/j.ssc.2006.02.005Search in Google Scholar

[14] Carvalo T.T., Tavares P.B., Mater. Lett., 62 (2008), 3984. http://dx.doi.org/10.1016/j.matlet.2008.05.05110.1016/j.matlet.2008.05.051Search in Google Scholar

[15] Klug M.P., Alexander L.E., X-ray Diffraction Procedure for Polycrystalline and Amorphous Materials, Wiley, New York, 1974, p. 634. Search in Google Scholar

[16] Okatan M.B., Mantese J.V., Alpay S.P., Acta Mater., 58 (2010), 39. http://dx.doi.org/10.1016/j.actamat.2009.08.05510.1016/j.actamat.2009.08.055Search in Google Scholar

[17] Yun K.Y., Noda M., Okuyama M., Saeki H., Tabata H., Saito K., J. Appl. Phys., 96 (2004), 3399. http://dx.doi.org/10.1063/1.177504510.1063/1.1775045Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo