1. bookVolume 31 (2013): Issue 4 (October 2013)
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Study of magnetic properties of two samples from FeVO4-Co3V2O8 system

Published Online: 15 Dec 2013
Volume & Issue: Volume 31 (2013) - Issue 4 (October 2013)
Page range: 601 - 610
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Two samples containing phases formed in the FeVO4-Co3V2O8 system were prepared by a conventional sintering method. The sample designated as H5 was one-phase with the howardevansite-type structure, while the sample designated as HL7 contained a mixture of H-type and lyonsite-type structures. The temperature dependence of the electron paramagnetic resonance (EPR) spectra and static magnetic susceptibility χ was investigated in the temperature range from liquid helium to room temperature. Both the EPR spectra and the dc magnetic susceptibility showed anomalous behavior indicating that the magnetic competition process may be responsible. A comparison of the obtained results with previous studies on related compounds with the same structure, i.e. M3Fe4V6O24 (M = Mg(II), Zn(II), and Cu(II)) revealed that the observed anomaly shifted to lower temperatures on replacing the non-magnetic ions by magnetic Co(II) ions. The temperature dependence of the inverse susceptibility χ −1 indicates the existence of antiferromagnetic interactions between Fe(III) and Co(II) spins in sample H5. The obtained values of the Curie-Weiss temperatures are lower than for the Mn3Fe4V6O24 compound and comparable to compounds from M3Fe4V6O24 systems with M diamagnetic cations. The introduction of cobalt cations intensifies the magnetic frustration what is reflected in the temperature dependence of the magnetic susceptibility at low temperatures.

Keywords

[1] Blonska-Tabero A., Kurzawa M., J. Therm. Anal. Calorim., 88 (2007), 33. http://dx.doi.org/10.1007/s10973-006-8046-810.1007/s10973-006-8046-8Search in Google Scholar

[2] Guskos N., Zolnierkiewicz G., Typek J., Blonska-Tabero A., Physica B, 406 (2011), 2163. http://dx.doi.org/10.1016/j.physb.2011.03.02310.1016/j.physb.2011.03.023Search in Google Scholar

[3] Guskos N. et al., J. Alloys Compd., 391 (2005), 20. http://dx.doi.org/10.1016/j.jallcom.2004.08.06710.1016/j.jallcom.2004.08.067Search in Google Scholar

[4] Beskrovnyy A. et al., Rev. Adv. Mat. Sci., 12 (2006), 166. Search in Google Scholar

[5] Zolnierkiewicz G., Guskos N., Typek J., Blonska-Tabero A., J. Non-Cryst. Solids, 352 (2006), 4362. http://dx.doi.org/10.1016/j.jnoncrysol.2006.07.03410.1016/j.jnoncrysol.2006.07.034Search in Google Scholar

[6] Harding W. D., Kung H. H., Kozhevnikov V. L., Poeppelmeier K. R., J. Catal., 144 (1993), 597. http://dx.doi.org/10.1006/jcat.1993.135610.1006/jcat.1993.1356Search in Google Scholar

[7] Lafontaine M. A., Greneche J. M., Laligant Y., Ferey G., J. Solid State Chem., 108 (1994), 1. http://dx.doi.org/10.1006/jssc.1994.100110.1006/jssc.1994.1001Search in Google Scholar

[8] Korili S. A., Ruiz S., Delmon B., Catal. Today, 32 (1996), 229. http://dx.doi.org/10.1016/S0920-5861(96)00182-410.1016/S0920-5861(96)00182-4Search in Google Scholar

[9] Wang X., Vander Griend D. A., Stern C. L., Poeppelmeir K. P., J. Alloys Compd., 298 (2000), 119. http://dx.doi.org/10.1016/S0925-8388(99)00662-310.1016/S0925-8388(99)00662-3Search in Google Scholar

[10] Rybarczyk P. et al., J. Catal., 202 (2001), 45. http://dx.doi.org/10.1006/jcat.2001.325110.1006/jcat.2001.3251Search in Google Scholar

[11] Briand L. E., Jehng J.-M., Cornaglia L., Hirt A. M., Wachs I. E., Catal. Today, 78 (2003), 257. http://dx.doi.org/10.1016/S0920-5861(02)00350-410.1016/S0920-5861(02)00350-4Search in Google Scholar

[12] Guskos N. et al., Rad. Effects & Def. in Solids, 158 (2003), 369. http://dx.doi.org/10.1080/104201502100005301510.1080/1042015021000053015Search in Google Scholar

[13] Guskos N. et al., J. Alloys Compd., 377 (2004), 47. http://dx.doi.org/10.1016/j.jallcom.2004.01.06610.1016/j.jallcom.2004.01.066Search in Google Scholar

[14] Likodimos V. et al., Eur. Phys. J. B., 38 (2004), 13. http://dx.doi.org/10.1140/epjb/e2004-00093-110.1140/epjb/e2004-00093-1Search in Google Scholar

[15] Bezkrovnyi et al., Mater. Sci.-Poland, 23 (2005), 883. Search in Google Scholar

[16] Guskos N. et al., Mater. Sci.-Poland, 24 (2006), 985. Search in Google Scholar

[17] Guskos N. et al., J. Appl. Phys., 101 (2007), 103922. http://dx.doi.org/10.1063/1.274032910.1063/1.2740329Search in Google Scholar

[18] Guskos N. et al., J. Non-Cryst. Solids, 355 (2009), 1419. http://dx.doi.org/10.1016/j.jnoncrysol.2009.05.03110.1016/j.jnoncrysol.2009.05.031Search in Google Scholar

[19] Zolnierkiewicz G., Guskos N., Typek J., Blonska-Tabero A., Acta Phys. Pol. A, 109 (2006), 675. 10.12693/APhysPolA.109.675Search in Google Scholar

[20] Zolnierkiewicz G., Guskos N., Typek J., Anagnostakis E. A., Blonska-Tabero A., Bosacka M., J. Alloys Compd., 471 (2009), 28. http://dx.doi.org/10.1016/j.jallcom.2008.03.10910.1016/j.jallcom.2008.03.109Search in Google Scholar

[21] Guskos N. et al., J. Alloys Compd. 509 (2011), 8153. http://dx.doi.org/10.1016/j.jallcom.2011.05.11410.1016/j.jallcom.2011.05.114Search in Google Scholar

[22] Wang X., Vander Griend D.A., Stern C.L., Poeppelmeier K.R., Inorg. Chem., 39 (2000), 136. http://dx.doi.org/10.1021/ic990927410.1021/ic990927411229020Search in Google Scholar

[23] Guskos N., Likodimos V., Typek J., Zolnierkiewicz G., Szymczak R., Blonska-Tabero A., J. Non-Cryst. Solids, 352 (2006), 4179. http://dx.doi.org/10.1016/j.jnoncrysol.2006.07.00910.1016/j.jnoncrysol.2006.07.009Search in Google Scholar

[24] Schiffer P., Daruka I., Phys. Rev. B, 56 (1997), 13712. http://dx.doi.org/10.1103/PhysRevB.56.1371210.1103/PhysRevB.56.13712Search in Google Scholar

[25] Moessner R., Berlisnky A. J., Phys. Rev. Lett., 83 (1999), 3293. http://dx.doi.org/10.1103/PhysRevLett.83.329310.1103/PhysRevLett.83.3293Search in Google Scholar

[26] Koksharov Y.A. et al., Phys. Rev. B, 63 (2000), 012407. http://dx.doi.org/10.1103/PhysRevB.63.01240710.1103/PhysRevB.63.012407Search in Google Scholar

[27] Guskos N. et al., J. Non-Cryst. Solids, 354 (2008), 4401. http://dx.doi.org/10.1016/j.jnoncrysol.2008.06.05910.1016/j.jnoncrysol.2008.06.059Search in Google Scholar

[28] Kliava J., Electron Magnetic Resonance of Nanoparticles: Superparamagnetic Resonance, in Magnetic nanoparticles (Ed. Sergey P. Gubin), Wiley-VCH, 2009, p. 255. 10.1002/9783527627561.ch7Search in Google Scholar

[29] Pilbrow J. R., Transition Ion Electron Paramagnetic Resonance; Clarendon Press: Oxford, 1990. Search in Google Scholar

[30] Guskos N., Glenis S., Karkas K., Zolnierkiewicz G., Bosacka M., Mater. Sci.-Poland, to be published. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo