1. bookVolume 30 (2012): Issue 3 (September 2012)
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

TiO2/bone composite materials for the separation of heavy metal impurities from waste water solutions

Published Online: 14 Sep 2012
Volume & Issue: Volume 30 (2012) - Issue 3 (September 2012)
Page range: 189 - 196
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Pure bone material obtained from cow meat, as apatite-rich material, and TiO2-bone composite materials are prepared and studied to be used for heavy metal ions separation from waste water solutions. Meat wastes are chemically and thermally treated to control their microstructure in order to prepare the composite materials that fulfill all the requirements to be used as selective membranes with high performance, stability and mechanical strength. The prepared materials are analyzed using Hg-porosimetry for surface characterization, energy dispersive X-ray spectroscopy (EDAX) for elemental analysis and Fourier transform infrared spectroscopy (FTIR) for chemical composition investigation. Structural studies are performed using X-ray diffraction (XRD). Microstructural properties are studied using scanning electron microscopy (SEM) and specific surface area studies are performed using Brunauer-Emmet-Teller (BET) method. XRD studies show that multiphase structures are obtained as a result of 1h sintering at 700–1200 °C for both pure bone and TiO2-bone composite materials. The factors affecting the transport of different heavy metal ions through the selected membranes are determined from permeation flux measurements. It is found that membrane pore size, membrane surface roughness and membrane surface charge are the key parameters that control the transport or rejection of heavy metal ions through the selected membranes.

Keywords

[1] Mohammadi T., Razmi A., Sadrzadeh M., Desalination, 167 (2004), 379. http://dx.doi.org/10.1016/j.desal.2004.06.15010.1016/j.desal.2004.06.150Search in Google Scholar

[2] Ajaykumar A.V., Darwish N.A., Hilal N., World Applied Science J. (Special Issue for Environmental), 5 (2009), 32. Search in Google Scholar

[3] Pagana A.E., Sklari S.D., Kikkinides E.S., Zaspalis V.T., Microporous and Mesoporous Materials, 110 (2008), 150. http://dx.doi.org/10.1016/j.micromeso.2007.10.01310.1016/j.micromeso.2007.10.013Search in Google Scholar

[4] Al-Asheh S., Abdel-Jabar N., Banat F., Adv. Environ. Res., 6 (2002) 221. http://dx.doi.org/10.1016/S1093-0191(01)00053-310.1016/S1093-0191(01)00053-3Search in Google Scholar

[5] Nayar S., Guha A., Mater. Sci. Eng. C, 29 (2009), 1326. http://dx.doi.org/10.1016/j.msec.2008.10.00210.1016/j.msec.2008.10.002Search in Google Scholar

[6] Xin F., Jian Ch., Jian-peng Z., Qian W., Zhongcheng Z., Jian-Ming R., Trans. Nonferrous Met. Soc. China, 19 (2009), 347. http://dx.doi.org/10.1016/S1003-6326(08)60276-910.1016/S1003-6326(08)60276-9Search in Google Scholar

[7] Prabakaran K., Rajeswari S., Trends Biomater. Artif. Organs, 20 [1]_(2006), 20. Search in Google Scholar

[8] Balázsi C., Wéber F., Kövé R, Horváth E., Németh C., J. Eur. Ceram. Soc., 27 (2007), 1601. http://dx.doi.org/10.1016/j.jeurceramsoc.2006.04.01610.1016/j.jeurceramsoc.2006.04.016Search in Google Scholar

[9] Zhu X., Yang W., AIChE J., 54[3] (2008), 665. http://dx.doi.org/10.1002/aic.1141010.1002/aic.11410Search in Google Scholar

[10] Idris A., Zain N.M., Journal Technology, 44 [F] (2006), 27. 10.11113/jt.v44.383Search in Google Scholar

[11] Kozlowski C., Apostoluk W., Walkowiak W., Kita A., Problems of Mineral Processing, 36, (2002), 115. 10.1016/S0043-1354(02)00216-6Search in Google Scholar

[12] Zhang Y., Cui, H., Ozao R., Cao Y., Chen B.I.T., Wang Ch-w., Pan W-P., Energy and Fuels, 21 (2007), 3735. http://dx.doi.org/10.1021/ef700358z10.1021/ef700358zSearch in Google Scholar

[13] Ozawa M., Suzuki S., J. Am. Ceram. Soc., 85 [5] (2002), 1315. 10.1111/j.1151-2916.2002.tb00268.xSearch in Google Scholar

[14] Tadic D., Epple M., Biomaterials, 25 (2004), 987. http://dx.doi.org/10.1016/S0142-9612(03)00621-510.1016/S0142-9612(03)00621-5Search in Google Scholar

[15] Yoo D., Kim I., Kim S., Hahn Ch.h., Lee Ch., Cho S., J. Non-Cryst. Solids, 303 (2002), 134. http://dx.doi.org/10.1016/S0022-3093(02)01041-410.1016/S0022-3093(02)01041-4Search in Google Scholar

[16] Chowdhury, S.R., Kumar P., Bhattacharya P.K., Kumar A., Separation and Purification Technology, 24 (2001), 271. http://dx.doi.org/10.1016/S1383-5866(01)00130-710.1016/S1383-5866(01)00130-7Search in Google Scholar

[17] Sanosh K.P., Chu M-CH., Balakrishnan A., Kim T.N., Cho S-J., Curr. Appl. Phys., 10 (2010), 68. http://dx.doi.org/10.1016/j.cap.2009.04.01410.1016/j.cap.2009.04.014Search in Google Scholar

[18] Ergun C., Doremus R.H., Turkish J. Eng. Env. Sci., 27 (2007), 423. Search in Google Scholar

[19] Li L., Dong J., Lee R., J. Colloid Interface Sci., 273 (2004), 540. http://dx.doi.org/10.1016/j.jcis.2003.09.00810.1016/j.jcis.2003.09.00815082392Search in Google Scholar

[20] Jung Ju Lee M.S. E.I., Ph.D. thesis, Ohio State University, Columbus, Ohio, USA (2009). Search in Google Scholar

[21] Vandiver J., Dean D., Patel N., Bonfield W., Ortiz Ch., Biomaterials, 26 (2005), 271. http://dx.doi.org/10.1016/j.biomaterials.2004.02.05310.1016/j.biomaterials.2004.02.05315262469Search in Google Scholar

[22] Elimelech M., Amy G.L., Clark M., Am. Chem. Soc., 40 [2] (2000), 298. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo