This work is licensed under the Creative Commons Attribution 4.0 International License.
Tekiela D. R, Barney J. N. Invasion shadows: The accumulation and loss of ecological impacts from an invasive plant. Invasive Plant Science and Management 2017:10(1):1–8. https://doi.org/10.1017/inp.2017.3Search in Google Scholar
Frommelt F. Invasive Alien Species – The Eradication or Use of Invasive Alien Species Under EU Law. In: Mauerhofer V., Rupo D., Tarquinio L. (eds) Sustainability and Law. Springer, Cham. 2020. https://doi.org/10.1007/978-3-030-42630-9_24Search in Google Scholar
Zhao G. H., Gao M. L., Wang D., Fan S. Q., Tang J., Sun K., Wen X. Y. Economic cost assessment of global invasive plants. Acta Prataculturae Sinica 2024:33(5):16. http://cyxb.magtech.com.cn/EN/Y2024/V33/I5/16Search in Google Scholar
Park K. Assessment and management of invasive alien predators. Ecology and Society 2004:9(2):12. https://doi.org/10.5751/ES-01208-090212Search in Google Scholar
Pimentel D., Zuniga R., Morrison D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 2005:52(3):273–288. https://doi.org/10.1016/j.ecolecon.2004.10.002Search in Google Scholar
Sun W., Sun Y., Hong X., Zhang Y., Liu. C. Research on Biomass Waste Utilization Based on Pollution Reduction and Carbon Sequestration. Sustainability 2023:15(5):4535. https://doi.org/10.3390/su15054535Search in Google Scholar
Carboneras C., Genovesi P., Vilà M., Blackburn T.M., Carrete M., Clavero M., Wynde R. A prioritised list of invasive alien species to assist the effective implementation of EU legislation. Journal of Applied Ecology 2018:55(2):539–547. https://doi.org/10.1111/1365-2664.12997Search in Google Scholar
Mack R. N., Simberloff D., Mark Lonsdale W., Evans H., Clout M., Bazzaz F. A. Biotic invasions: causes. epidemiology. global consequences. and control. Ecological Applications 2000:10(3):689–710. https://doi.org/10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2Search in Google Scholar
Nega D. T., Ancha V. R., Manenti F., Adeel Z. A comprehensive policy framework for unlocking the potential of water hyacinth in Ethiopia’s circular bioeconomy. Journal of Cleaner Production 2024:435:140509. https://doi.org/10.1016/j.jclepro.2023.140509Search in Google Scholar
Zihare L., Muizniece I., Blumberga D. New Vision on Invasive Alien Plant Management System. Environmental and Climate Technologies 2019:23(2):166–186. https://doi.org/10.2478/rtuect-2019-0062Search in Google Scholar
Pokorny J., Kołakowska A., Bienkiewicz G. Lipid-protein and lipid-saccharide interactions. In: Chemical. biological and functional aspects of food lipids. (Eds.) Sikorski Z. E., Kolakowska A. 2010. https://doi.org/10.1201/b10272Search in Google Scholar
Jamieson M. A., Bowers M. D. Iridoid glycoside variation in the invasive plant Dalmatian toadflax, Linaria dalmatica (Plantaginaceae). and sequestration by the biological control agent, Calophasia lunula. Journal of Chemical Ecology 2010:36:70–79. https://doi.org/10.1007/s10886-009-9728-zSearch in Google Scholar
Li X., Li S., Cheng J., Fu R., Zhan A. Proteomic response to environmental stresses in the stolon of a highly invasive fouling ascidian. Frontiers in Marine Science 2021:8:761628. https://doi.org/10.3389/fmars.2021.761628Search in Google Scholar
Saini R. K., Prasad P., Shang X., Keum Y. S. Advances in lipid extraction methods – a review. International Journal of Molecular Sciences 2021:22(24):13643. https://doi.org/10.3390/ijms222413643Search in Google Scholar
Metličar V., Vovk I., Albreht A. Japanese and Bohemian knotweeds as sustainable sources of carotenoids. Plants 2019:8(10):384. https://doi.org/10.3390/plants8100384Search in Google Scholar
Yin L., Xu J., Zhang L., Liu D., Zhang C., Liu T., Wang S., Deng X. Altered fatty acid composition confers improved drought acclimation in maize. Plant Physiology and Biochemistry 2023:206:108274. https://doi.org/10.1016/j.plaphy.2023.108274Search in Google Scholar
Mitra S., Begum A. Osmotic stress induced alterations in fatty acid composition and other metabolic responses in seedlings of Sinapis alba. Environmental and Experimental Biology 2023:21(1):11–19. https://doi.org/10.22364/eeb.21.02Search in Google Scholar
Xia Y., Ding B., Wang H., Hofvander P., Jarl-Sunesson C., Löfstedt C. Production of moth sex pheromone precursors in Nicotiana spp.: a worthwhile new approach to pest control. Journal of Pest Science 2020:93(4):1333–1346. https://doi.org/10.1007/s10340-020-01250-6Search in Google Scholar
Sahyouni W.A., Kantar S.E., Khelfa A., Park Y., Nicaud J., Louka N., Koubaa M. Optimization of cis-9-Heptadecenoic Acid Production from the Oleaginous Yeast Yarrowia lipolytica. Fermentation 2020:8(6):245. https://doi.org/10.3390/fermentation8060245Search in Google Scholar
Al-Amrousi E., Badr A., Abdel-Razek A., Gromadzka K., Drzewiecka K., Hassanein, M. A comprehensive study of lupin seed oils and the roasting effect on their chemical and biological activity. Plants 2022:11(17):2301. https://doi.org/10.3390/plants11172301Search in Google Scholar
Buszewski B., Rafińska K., Cvetanović A., Walczak J., Krakowska A., Rudnicka J., Zeković, Z. Phytochemical analysis and biological activity of Lupinus luteus seeds extracts obtained by supercritical fluid extraction. Phytochemistry Letters 2019:30:338–348. https://doi.org/10.1016/j.phytol.2019.02.014Search in Google Scholar