Uneingeschränkter Zugang

Invasive Plant Biomass as a Source of Lipids for Bioeconomy

, ,  und   
19. Juni 2025

Zitieren
COVER HERUNTERLADEN

Tekiela D. R, Barney J. N. Invasion shadows: The accumulation and loss of ecological impacts from an invasive plant. Invasive Plant Science and Management 2017:10(1):1–8. https://doi.org/10.1017/inp.2017.3 Search in Google Scholar

Frommelt F. Invasive Alien Species – The Eradication or Use of Invasive Alien Species Under EU Law. In: Mauerhofer V., Rupo D., Tarquinio L. (eds) Sustainability and Law. Springer, Cham. 2020. https://doi.org/10.1007/978-3-030-42630-9_24 Search in Google Scholar

Zhao G. H., Gao M. L., Wang D., Fan S. Q., Tang J., Sun K., Wen X. Y. Economic cost assessment of global invasive plants. Acta Prataculturae Sinica 2024:33(5):16. http://cyxb.magtech.com.cn/EN/Y2024/V33/I5/16 Search in Google Scholar

Park K. Assessment and management of invasive alien predators. Ecology and Society 2004:9(2):12. https://doi.org/10.5751/ES-01208-090212 Search in Google Scholar

Pimentel D., Zuniga R., Morrison D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 2005:52(3):273–288. https://doi.org/10.1016/j.ecolecon.2004.10.002 Search in Google Scholar

Sun W., Sun Y., Hong X., Zhang Y., Liu. C. Research on Biomass Waste Utilization Based on Pollution Reduction and Carbon Sequestration. Sustainability 2023:15(5):4535. https://doi.org/10.3390/su15054535 Search in Google Scholar

Carboneras C., Genovesi P., Vilà M., Blackburn T.M., Carrete M., Clavero M., Wynde R. A prioritised list of invasive alien species to assist the effective implementation of EU legislation. Journal of Applied Ecology 2018:55(2):539–547. https://doi.org/10.1111/1365-2664.12997 Search in Google Scholar

Mack R. N., Simberloff D., Mark Lonsdale W., Evans H., Clout M., Bazzaz F. A. Biotic invasions: causes. epidemiology. global consequences. and control. Ecological Applications 2000:10(3):689–710. https://doi.org/10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2 Search in Google Scholar

Nega D. T., Ancha V. R., Manenti F., Adeel Z. A comprehensive policy framework for unlocking the potential of water hyacinth in Ethiopia’s circular bioeconomy. Journal of Cleaner Production 2024:435:140509. https://doi.org/10.1016/j.jclepro.2023.140509 Search in Google Scholar

Zihare L., Muizniece I., Blumberga D. New Vision on Invasive Alien Plant Management System. Environmental and Climate Technologies 2019:23(2):166–186. https://doi.org/10.2478/rtuect-2019-0062 Search in Google Scholar

Pokorny J., Kołakowska A., Bienkiewicz G. Lipid-protein and lipid-saccharide interactions. In: Chemical. biological and functional aspects of food lipids. (Eds.) Sikorski Z. E., Kolakowska A. 2010. https://doi.org/10.1201/b10272 Search in Google Scholar

Jamieson M. A., Bowers M. D. Iridoid glycoside variation in the invasive plant Dalmatian toadflax, Linaria dalmatica (Plantaginaceae). and sequestration by the biological control agent, Calophasia lunula. Journal of Chemical Ecology 2010:36:70–79. https://doi.org/10.1007/s10886-009-9728-z Search in Google Scholar

Li X., Li S., Cheng J., Fu R., Zhan A. Proteomic response to environmental stresses in the stolon of a highly invasive fouling ascidian. Frontiers in Marine Science 2021:8:761628. https://doi.org/10.3389/fmars.2021.761628 Search in Google Scholar

Saini R. K., Prasad P., Shang X., Keum Y. S. Advances in lipid extraction methods – a review. International Journal of Molecular Sciences 2021:22(24):13643. https://doi.org/10.3390/ijms222413643 Search in Google Scholar

Metličar V., Vovk I., Albreht A. Japanese and Bohemian knotweeds as sustainable sources of carotenoids. Plants 2019:8(10):384. https://doi.org/10.3390/plants8100384 Search in Google Scholar

Yin L., Xu J., Zhang L., Liu D., Zhang C., Liu T., Wang S., Deng X. Altered fatty acid composition confers improved drought acclimation in maize. Plant Physiology and Biochemistry 2023:206:108274. https://doi.org/10.1016/j.plaphy.2023.108274 Search in Google Scholar

Mitra S., Begum A. Osmotic stress induced alterations in fatty acid composition and other metabolic responses in seedlings of Sinapis alba. Environmental and Experimental Biology 2023:21(1):11–19. https://doi.org/10.22364/eeb.21.02 Search in Google Scholar

Xia Y., Ding B., Wang H., Hofvander P., Jarl-Sunesson C., Löfstedt C. Production of moth sex pheromone precursors in Nicotiana spp.: a worthwhile new approach to pest control. Journal of Pest Science 2020:93(4):1333–1346. https://doi.org/10.1007/s10340-020-01250-6 Search in Google Scholar

Sahyouni W.A., Kantar S.E., Khelfa A., Park Y., Nicaud J., Louka N., Koubaa M. Optimization of cis-9-Heptadecenoic Acid Production from the Oleaginous Yeast Yarrowia lipolytica. Fermentation 2020:8(6):245. https://doi.org/10.3390/fermentation8060245 Search in Google Scholar

Al-Amrousi E., Badr A., Abdel-Razek A., Gromadzka K., Drzewiecka K., Hassanein, M. A comprehensive study of lupin seed oils and the roasting effect on their chemical and biological activity. Plants 2022:11(17):2301. https://doi.org/10.3390/plants11172301 Search in Google Scholar

Buszewski B., Rafińska K., Cvetanović A., Walczak J., Krakowska A., Rudnicka J., Zeković, Z. Phytochemical analysis and biological activity of Lupinus luteus seeds extracts obtained by supercritical fluid extraction. Phytochemistry Letters 2019:30:338–348. https://doi.org/10.1016/j.phytol.2019.02.014 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biologie, andere