Open Access

Carbon Farming: A Systematic Literature Review on Sustainable Practices

, ,  and   
Dec 21, 2024

Cite
Download Cover

Commission presents recommendation for 2040 emissions reduction target to set the path to climate neutrality in 2050. [Online]. [Accessed 01.04.2024] Available: https://ec.europa.eu/commission/presscorner/detail/en/ip_24_588 Search in Google Scholar

Bartzas G., Doula M., Hliaoutakis A., Papadopoulos N. S., Tsotsolas N. Low carbon certification of agricultural production using field GHG measurements. Development of an integrated framework with emphasis on mediterranean products. Case Studies in Chemical and Environmental Engineering 2024:9:100666. https://doi.org/10.1016/j.cscee.2024.100666 Search in Google Scholar

Kreft C., Angst M., Huber R., Finger R. Farmers’ social networks and regional spillover effects in agricultural climate change mitigation. Climatic Change 2023:176:8. https://doi.org/10.1007/s10584-023-03484-6 Search in Google Scholar

Voltr V., Menšík L., Hlísníkovský L., Hruška M., Pokorný E., Pospíšilová L. The soil organic matter in connection with soil properties and soil inputs. Agronomy 2021:11(4):779. https://doi.org/10.3390/agronomy11040779. Search in Google Scholar

Abdeldaym E. A., Traversa A., Cocozza C., Brunetti G. Effects of a 2‐year application of different residual biomasses on soil properties and potato yield. CLEAN – Soil, Air, Water 2018:46(12):1800261. https://doi.org/10.1002/clen.201800261 Search in Google Scholar

Israel M. A., Amikuzuno J., Danso-Abbeam G. Assessing farmers’ contribution to greenhouse gas emission and the impact of adopting climate-smart agriculture on mitigation. Ecological Process 2020:9:51. https://doi.org/10.1186/s13717-020-00249-2 Search in Google Scholar

Strapchuk S. І., Mykolenko O. P. Factors of Sustainable Intensification in Agriculture of Ukraine: Evidence from the Enterprises of the Kharkivska Oblast. Scientific Bulletin of Mukachevo State University Series Economics 2021:8:3:9–17. https://doi.org/10.52566/msu-econ.8(3).2021.9-17 Search in Google Scholar

Armstrong J. H., Kamieniecki S. Sustainability Policy Research: A Review and Synthesis. Policy Studies Journal 2019:47(S1):S45–S65. https://doi.org/10.1111/psj.12320 Search in Google Scholar

Promoting carbon farming through the CAP. EEB – The European Environmental Bureau [Online]. [Accessed 01.04.2024]. Available: https://eeb.org/library/promoting-carbon-farming-through-the-cap/ Search in Google Scholar

Cuadros-Casanova I., Cristiano A., Biancolini D., Cimatti M., Sessa A. A., Mendez Angarita V. Y., Dragonetti C., Pacifici M., Rondinini C., Marco M. D. Opportunities and challenges for Common Agricultural Policy reform to support the European Green Deal. Conservation Biology 2023:37(3):e14052. https://doi.org/10.1111/cobi.14052 Search in Google Scholar

Saikanth D. R. K., Kishore A. J., Sadineni T., Singh V., Upadhyay L., Kumar S., Panigrahi C. K. A review on exploring carbon farming as a strategy to mitigate greenhouse gas emissions. International Journal of Plant & Soil Science 2023:35(23):380–388. https://doi.org/10.9734/ijpss/2023/v35i234253. Search in Google Scholar

Tang K., He C., Ma C., Dong W. Does carbon farming provide a cost‐effective option to mitigate GHG emissions? Evidence from China. Australian Journal of Agricultural and Resource Economics 2019:63(3):575–592. https://doi.org/10.1111/1467-8489.12306. Search in Google Scholar

Doukas Y. E., Salvati L., Vardopoulos I. Unraveling the European agricultural policy sustainable development trajectory. Land 2023:12(9):1749. https://doi.org/10.3390/land12091749 Search in Google Scholar

Gadzhiev N., Khasbulatova Z. S., Baysangurova A. A. Study of carbon sequestration processes in forestry on carbon farms. BIO Web of Conferences 2023:63:07006. https://doi.org/10.1051/bioconf/20236307006. Search in Google Scholar

Rijal S. Agroforestry system: approaches for climate change mitigation and adaptation. Big Data in Agriculture 2019:1(2):23–25. https://doi.org/10.26480/bda.02.2019.23.25. Search in Google Scholar

Bumbiere K., Sanchez F. A. D., Pubule J., Blumberga D. Development and assessment of carbon farming solutions. Environmental and Climate Technologies 2022:26(1):898–916. https://doi.org/10.2478/rtuect-2022-0068. Search in Google Scholar

Van Hoof S. Climate change mitigation in agriculture: barriers to the adoption of carbon farming policies in the EU. Sustainability 2023:15(13):10452. https://doi.org/10.3390/su151310452 Search in Google Scholar

Dumbrell N. P., Kragt M., Gibson F. What carbon farming activities are farmers likely to adopt? A best – worst scaling survey. Land Use Policy 2016:54:29–37. https://doi.org/10.1016/j.landusepol.2016.02.002. Search in Google Scholar

Reidsma P., Wolf J., Kanellopoulos A., Schaap B., Mandryk M., Verhagen A., Ittersum M. Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands. Environmental Research Letters 2015:10(4):045004. https://doi.org/10.1088/1748-9326/10/4/045004 Search in Google Scholar

Machmuller M. B., Kramer M. G., Cyle K. T., Hill N., Hancock D. W., Thompson A. Emerging land use practices rapidly increase soil organic matter. Nature Communications 2015:6(1):6995. https://doi.org/10.1038/ncomms7995 Search in Google Scholar

Nevalainen O., Niemitalo O., Fer I., Juntunen A., Mattila T., Koskela O., Liski J. Towards agricultural soil carbon monitoring, reporting, and verification through the field observatory network (FiON). Geoscientific Instrumentation, Methods and Data Systems 2022:11(1):93–109. https://doi.org/10.5194/gi-11-93-2022 Search in Google Scholar

Avasiloaiei D. I., Calara M., Brezeanu P. M., Gruda N. S., Brezeanu C. The evaluation of carbon farming strategies in organic vegetable cultivation. Agronomy 2023:13(9):2406. https://doi.org/10.3390/agronomy13092406 Search in Google Scholar

Scotton M. Seed production of semi‐natural grasslands: amount and variability in an unfertilized upright brome and a fertilized tall oat-grass meadow. Grass and Forage Science 2020:75(4):409–423. https://doi.org/10.1111/gfs.12502 Search in Google Scholar

Kasirao G., Himavarsha P., Tomar S., Sharma A. Carbon farming – the healing lungs of future agriculture: a review. Pollution Research 2023:42(3):331–334. https://doi.org/10.53550/pr.2023.v42i03.004 Search in Google Scholar

Evans M. C., Carwardine J., Fensham R. J., Butler D., Wilson K. A., Possingham H. P., Martin T. G. Carbon farming via assisted natural regeneration as a cost-effective mechanism for restoring biodiversity in agricultural landscapes. Environmental Science & Policy 2015:50:114–129. https://doi.org/10.1016/j.envsci.2015.02.003. Search in Google Scholar

Gan Y., Liang C., Chai Q., Lemke R., Campbell C. A., Zentner R. P. Improving farming practices reduces the carbon footprint of spring wheat production. Nature Communications 2014:5(1):5012. https://doi.org/10.1038/ncomms6012 Search in Google Scholar

Page M. J., Moher D., Bossuyt P. M., Boutron I., Hoffmann T., Mulrow C. D., McKenzie J. E. Prisma 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 2021:372:n160. https://doi.org/10.1136/bmj.n160 Search in Google Scholar

Ardern C. L., Büttner F., Andrade R., Weir A., Ashe M. C., Holden S., Winters M. Implementing the 27 Prisma 2020 statement items for systematic reviews in the sport and exercise medicine, musculoskeletal rehabilitation and sports science fields: the persist (implementing prisma in exercise, rehabilitation, sports medicine and sports science) guidance. British Journal of Sports Medicine 2021:56(4):175–195. https://doi.org/10.1136/bjsports-2021-103987 Search in Google Scholar

Aguinis H., Ramani R. S., Alabduljader N. Best-practice recommendations for producers, evaluators, and users of methodological literature reviews. Organizational Research Methods 2020:26(1):46–76. https://doi.org/10.1177/1094428120943281 Search in Google Scholar

Commission sets the carbon farming initiative in motion - European Commission [Online]. [Accessed 01.04.2024]. Available: https://climate.ec.europa.eu/news-your-voice/news/commission-sets-carbon-farming-initiative-motion-2021-04-27_en Search in Google Scholar

Carbon Farming [Online]. [Accessed 01.04.2024]. Available: https://climate.ec.europa.eu/eu-action/sustainable-carbon-cycles/carbon-farming_en Search in Google Scholar

Cavalaris C. Rotational tillage practices to deal with soil compaction in carbon farming. Soil Systems 2023:7(4):90. https://doi.org/10.3390/soilsystems7040090 Search in Google Scholar

Melero S., López-Garrido R., Murillo J., Moreno F. Conservation tillage: short- and long-term effects on soil carbon fractions and enzymatic activities under Mediterranean conditions. Soil and Tillage Research 2009:104(2):292–298. https://doi.org/10.1016/j.still.2009.04.001 Search in Google Scholar

Álvaro‐Fuentes J., López M., Arrúe J., Moret D. Tillage and cropping effects on soil organic carbon in Mediterranean semiarid agroecosystems: Testing the Century model. Agriculture Ecosystems & Environment 2009:134(3–4):211–217. https://doi.org/10.1016/j.agee.2009.07.001 Search in Google Scholar

Li Y., Zhou L., Chang S., Cui S., Jagadamma S., Ghiglieno Q., Cai Y. Residue retention promotes soil carbon accumulation in minimum tillage systems: implications for conservation agriculture. The Science of the Total Environment 2020:740:140147. https://doi.org/10.1016/j.scitotenv.2020.140147 Search in Google Scholar

Kyriakarakos G. Carbon farming: bridging technology development with policy goals. Sustainability 2024:16(5):1903. https://doi.org/10.3390/su16051903 Search in Google Scholar

Block J. Farmers’ willingness to participate in a carbon sequestration program – a discrete choice experiment. Environmental Management 2024:74(2):332–349. https://doi.org/10.1007/s00267-024-01963-9 Search in Google Scholar

Rosinger C., Keiblinger K., Bieber M., Bernardini L., Huber S., Mentler A., Bodner G. On-farm soil organic carbon sequestration potentials are dominated by site effects, not by management practices. Geoderma 2023:433:116466. https://doi.org/10.1016/j.geoderma.2023.116466 Search in Google Scholar

Haddaway N., Hedlund K., Jackson L., Kätterer T., Lugato E., Thomsen I., Isberg, P. How does tillage intensity affect soil organic carbon? A systematic review protocol. Environmental Evidence 2016:5:1. https://doi.org/10.1186/s13750-016-0052-0 Search in Google Scholar

Mihelič R. Effects of transitioning from conventional to organic farming on soil organic carbon and microbial community: a comparison of long-term non-inversion minimum tillage and conventional tillage. Biology and Fertility of Soils 2024:60(3):341–355. https://doi.org/10.1007/s00374-024-01796-y Search in Google Scholar

Sae-Tun O., Keiblinger K., Rosinger C., Mentler A., Bodner G. Characterization of aggregate-stabilized dissolved organic matter release – a novel approach to determine soil health advances of conservation farming systems. Plant and Soil 2022:488(1–2):101–119. https://doi.org/10.1007/s11104-022-05713-w Search in Google Scholar

Pesce S. A modified version of RothC to model the direct and indirect effects of rice straw mulching on soil carbon dynamics, calibrated in two Valencian citrus orchards. Soil Systems 2024:8(1):12. https://doi.org/10.3390/soilsystems8010012 Search in Google Scholar

Taghikhah F., Costanza R., Voinov A. DAESim: a dynamic agro-ecosystem simulation model for natural capital assessment. Ecological Modelling 2022:468:109930. https://doi.org/10.1016/j.ecolmodel.2022.109930 Search in Google Scholar

Ghaley B., Rusu T., Sandén T., Spiegel H., Menta C., Visioli G., Henriksen C. Assessment of benefits of conservation agriculture on soil functions in arable production systems in Europe. Sustainability 2018:10(3):794. https://doi.org/10.3390/su10030794 Search in Google Scholar

Paul C., Bartkowski B., Dönmez C., Don A., Mayer S., Steffens M., Helming K. Carbon farming: are soil carbon certificates a suitable tool for climate change mitigation? Journal of Environmental Management 2023:330:117142. https://doi.org/10.1016/j.jenvman.2022.117142 Search in Google Scholar

Longo M., Ferro N., Izaurralde R., Furlan L., Chiarini F., Morari F. Deep soc stock dynamics under contrasting management systems: is the epic model ready for carbon farming implementation? European Journal of Agronomy 2023:145:126771. https://doi.org/10.1016/j.eja.2023.126771 Search in Google Scholar

Smith P. Olesen J. Synergies between the mitigation of, and adaptation to, climate change in agriculture. The Journal of Agricultural Science 2010:148(5):543–552. https://doi.org/10.1017/s0021859610000341 Search in Google Scholar

Mattila T. Do carbon farming practices build bioavailable nitrogen pools? Soil Use and Management 2023:39(4):1532– 1544. https://doi.org/10.1111/sum.12930 Search in Google Scholar

Olsson L. Jerneck A. Farmers fighting climate change – from victims to agents in subsistence livelihoods. Wiley Interdisciplinary Reviews Climate Change 2010:1(3):363–373. https://doi.org/10.1002/wcc.44 Search in Google Scholar

Begum K., Zornoza R., Farina R., Lemola R., Álvaro-Fuentes J., Cerasuolo M. Modeling soil carbon under diverse cropping systems and farming management in contrasting climatic regions in Europe. Frontiers in Environmental Science 2022:10. https://doi.org/10.3389/fenvs.2022.819162 Search in Google Scholar

Alcalá-Herrera R., Moreno B., Aguirrebengoa M., Winter S., Robles-Cruz A.B., Ramos-Font M.E., Benítez E. Role of Agricultural Management in the Provision of Ecosystem Services in Warm Climate Vineyards: Functional Prediction of Genes Involved in Nutrient Cycling and Carbon Sequestration. Plants 2023:12(13):527. https://doi.org/10.3390/plants12030527 Search in Google Scholar

Aguilera E., Guzmán G. I., Alonso A. M. Greenhouse gas emissions from conventional and organic cropping systems in Spain. I. Herbaceous crops. Agronomy for Sustainable Development 2014:35(2):713–724. https://doi.org/10.1007/s13593-014-0267-9 Search in Google Scholar

Ghiglieno I., Simonetto A., Facciano L., Tonni M., Donna P., Valenti L., Gilioli G. Comparing the carbon footprint of conventional and organic vineyards in northern Italy. Sustainability 2023:15(6):5252. https://doi.org/10.3390/su15065252 Search in Google Scholar

Drexler S., Don A. Carbon sequestration potential in hedgerow soils: results from 23 sites in Germany. Geoderma 2024:445:116878. https://doi.org/10.1016/j.geoderma.2024.116878 Search in Google Scholar

Attia A., Marohn C., Shawon A. R., de Kock A., Strassemeyer J., Feike T. Do rotations with cover crops increase yield and soil organic carbon? – A modeling study in southwest Germany. Agriculture, Ecosystems & Environment 2024:375:109167. https://doi.org/10.1016/j.agee.2024.109167 Search in Google Scholar

Mattila T. J., Hagelberg E., Söderlund S., and Joona J. How farmers approach soil carbon sequestration? Lessons learned from 105 carbon-farming plans. Soil and Tillage Research 2022:215:105204. https://doi.org/10.1016/j.still.2021.105204 Search in Google Scholar

Vicente-Vicente J. L., García‐Ruiz R., Francaviglia R., Aguilera E., Smith P. Soil carbon sequestration rates under Mediterranean woody crops using recommended management practices: A meta-analysis. Agriculture, Ecosystems & Environment 2016:235:204–214. https://doi.org/10.1016/j.agee.2016.10.024 Search in Google Scholar

Kim J. H., Jobbágy E. G., Richter D., Trumbore S. E., Jackson R. B. Agricultural acceleration of soil carbonate weathering. Global Change Biology 2020:26(10):5988–6002. https://doi.org/10.1111/gcb.15207 Search in Google Scholar

Doyeni M. O., Barčauskaitė K., Buneviciene K., Venslauskas K., Navickas K., Rubežius M., Tilvikienė V. Nitrogen flow in livestock waste system towards an efficient circular economy in agriculture. Waste Management Research: The Journal for a Sustainable Circular Economy 2022:41(3):701–712. https://doi.org/10.1177/0734242x221123484 Search in Google Scholar

Herrera R., Moreno B., Aguirrebengoa M., Winter S., Robles-Cruz A. B., Ramos-Font M. E., Benítez E. Role of agricultural management in the provision of ecosystem services in warm climate vineyards: functional prediction of genes involved in nutrient cycling and carbon sequestration. Plants 2023:12(3):527. https://doi.org/10.3390/plants12030527 Search in Google Scholar

Koppelmäki K., Lamminen M., Helenius J., Schulte R. P. Smart integration of food and bioenergy production delivers on multiple ecosystem services. Food and Energy Security 2021:10(2):351–367. https://doi.org/10.1002/fes3.279 Search in Google Scholar

Paul C., Bartkowski B., Dönmez C., Don A., Mayer S., Steffens M., Helming, K. Carbon farming: are soil carbon certificates a suitable tool for climate change mitigation? Journal of Environmental Management 2023:330:117142. https://doi.org/10.1016/j.jenvman.2022.117142 Search in Google Scholar

Block J. B., Danne M., Mußhoff O. Farmers’ willingness to participate in a carbon sequestration program – a discrete choice experiment. Environmental Management 2024:74(2):332–349. https://doi.org/10.1007/s00267-024-01963-9 Search in Google Scholar

Ruf T. Emmerling C. Biomass partitioning and nutrient fluxes in silphium perfoliatum and silage maize cropping systems. Nutrient Cycling in Agroecosystems 2022:124(3):389–405. https://doi.org/10.1007/s10705-022-10242-0 Search in Google Scholar

Carter M. S., Hauggaard-Nielsen H., Heiske S., Jensen M. B., Thomsen S. T., Schmidt J. E., Ambus, P. Consequences of field N2O emissions for the environmental sustainability of plant‐based biofuels produced within an organic farming system. GCB Bioenergy 2011:4(4):435–452. https://doi.org/10.1111/j.1757-1707.2011.01132.x Search in Google Scholar

Wu F., Pfenninger S., Muller A. Land-free bioenergy from circular agroecology—a diverse option space and trade-offs. Environmental Research Letters 2024:19(4):044044. https://doi.org/10.1088/1748-9326/ad33d5 Search in Google Scholar

Rosinger C., Bodner G., Bernardini L. G., Huber S., Mentler A., Sae-Tun O., Keiblinger, K. M. Benchmarking carbon sequestration potentials in arable soils by on-farm research on innovative pioneer farms. Plant and Soil 2022:488(1–2):137–156. https://doi.org/10.1007/s11104-022-05626-8 Search in Google Scholar

Volungevičius J., Feiza V., Amalevičiūtė-Volungė K., Liaudanskienė I., Šlepetienė A., Kuncevičius A., Poškienė J. Transformations of different soils under natural and anthropogenized land management. Zemdirbyste-Agriculture 2019:106(1):3–14. https://doi.org/10.13080/z-a.2019.106.001 Search in Google Scholar

Chen X., Hu Y., Xia Y., Zheng S., Ma C., Rui Y., Su Y. Contrasting pathways of carbon sequestration in paddy and upland soils. Global Change Biology 2021:27(11):2478–2490. https://doi.org/10.1111/gcb.15595 Search in Google Scholar

Sae-Tun O., Keiblinger K. M., Rosinger C., Mentler A., Mayer H., Bodner G. Characterization of aggregate-stabilized dissolved organic matter release - a novel approach to determine soil health advances of conservation farming systems. Plant and Soil 2022:488(1–2):101–119. https://doi.org/10.1007/s11104-022-05713-w Search in Google Scholar

Hirte J., Walder F., Heß J., Büchi L., Colombi T., Heijden M. G. v. d., Mayer J. Enhanced root carbon allocation through organic farming is restricted to topsoils. Science of the Total Environment 2021:755:143551. https://doi.org/10.1016/j.scitotenv.2020.143551 Search in Google Scholar

Valujeva K., O’Sullivan L., Gutzler C., Fealy R., Schulte R. P. The challenge of managing soil functions at multiple scales: an optimisation study of the synergistic and antagonistic trade-offs between soil functions in Ireland. Land Use Policy 2016:58:335–347. https://doi.org/10.1016/j.landusepol.2016.07.028 Search in Google Scholar

Zanella A., Bolzonella C., Lowenfels J., Ponge J., Bouché M. B., Saha D., Fukuoka M. Humusica 2, article 19: Techno humus systems and global change–conservation agriculture and 4/1000 proposal. Applied Soil Ecology 2018:122:271– 296. https://doi.org/10.1016/j.apsoil.2017.10.036 Search in Google Scholar

Schulte R. P., O’Sullivan L., Vrebos D., Bampa F., Jones A., Staes J. Demands on land: mapping competing societal expectations for the functionality of agricultural soils in Europe. Environmental Science & Policy 2019:100:113–125. https://doi.org/10.1016/j.envsci.2019.06.011 Search in Google Scholar

Soinne H., Hyyrynen M., Jokubė M., Keskinen R., Hyväluoma J., Pihlainen S., Heikkinen J. High organic carbon content constricts the potential for stable organic carbon accrual in mineral agricultural soils in Finland. Journal of Environmental Management 2024:352:119945. https://doi.org/10.1016/j.jenvman.2023.119945 Search in Google Scholar

Gantlett R., Bishop J., Jones H. E., Lukac M. Modern arable and diverse ley farming systems can increase soil organic matter faster than global targets. Ren Agriculture and Food Systems 2024:39. https://doi.org/10.1017/s1742170524000103 Search in Google Scholar

Bessou C., Basset-Mens C., Tran T., Benoist A. LCA applied to perennial cropping systems: a review focused on the farm stage. The Int. Journal of Life Cycle Assessment 2012:18(2):340–361. https://doi.org/10.1007/s11367-012-0502-z Search in Google Scholar

Zucaro A., Forte A., Fagnano M., Bastianoni S., Basosi R., Fierro A. Comparative attributional life cycle assessment of annual and perennial lignocellulosic feedstocks production under Mediterranean climate for biorefinery framework. Integrated Environmental Assessment and Management 2015:11(3):397–403. https://doi.org/10.1002/ieam.1604 Search in Google Scholar

Ledo A., Smith P., Zerihun A., Whitaker J., Vicente-Vicente J. L., Qin Z., Hillier J. Changes in soil organic carbon under perennial crops. Global Change Biology 2020:26(7):4158–4168. https://doi.org/10.1111/gcb.15120 Search in Google Scholar

Means M., Crews T. E., Souza L. Annual and perennial crop composition impacts on soil carbon and nitrogen dynamics at two different depths. Renewable Agriculture and Food Systems 2022:37(5):437–444. https://doi.org/10.1017/s1742170522000084 Search in Google Scholar

Adebiyi J. A., Olabisi L. S., Snapp S. S. Understanding perennial wheat adoption as a transformative technology: evidence from the literature and farmers. Renewable Agriculture and Food Systems 2015:31(2):101–110. https://doi.org/10.1017/s1742170515000150 Search in Google Scholar

Scott E. I., Toensmeier E., Iutzi F., Rosenberg N., Lovell S. T., Jordan N. R., Leib E. B. Policy pathways for perennial agriculture. Frontiers in Sustainable Food Systems 2022:6. https://doi.org/10.3389/fsufs.2022.983398 Search in Google Scholar

Danso-Abbeam G., Amin K. M., Ogundeji A. A. Enhancing household welfare through perennial crop production in northern Ghana. Sustainability 2022:15(1):451. https://doi.org/10.3390/su15010451 Search in Google Scholar

Kantar M. B., Tyl C., Dorn K. M., Zhang X., Jungers J. M., Kaser J. M., Wyse D. L. Perennial grain and oilseed crops. Annual Review of Plant Biology 2016:67(1):703–729. https://doi.org/10.1146/annurev-arplant-043015-112311 Search in Google Scholar

Herder M. d., Moreno G., Mosquera-Losada M. R., Palma J., Sidiropoulou A., Santiago-Freijanes J. J., Burgess P. J. Current extent and stratification of agroforestry in the European Union. Agriculture, Ecosystems & Environment 2017:241:121–132. https://doi.org/10.1016/j.agee.2017.03.005 Search in Google Scholar

Tefera Y. Potential of agroforestry for climate change mitigation through carbon sequestration: review paper. Agricultural Research & Technology 2019:22(3):556198. https://doi.org/10.19080/artoaj.2019.22.556196 Search in Google Scholar

Torralba M., Fagerholm N., Burgess P. J., Moreno G., Plieninger T. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture, Ecosystems & Environment 2016:230:150–161. https://doi.org/10.1016/j.agee.2016.06.002 Search in Google Scholar

Ahmad F., Talukdar N. R., Biradar C., Dhyani S. K., Rizvi J. Harnessing the potentiality of farm landscape for trees based on satellite evaluation: a GIS modeling perspective. Anthropocene Science 2022:1(2):278–294. https://doi.org/10.1007/s44177-022-00025-1 Search in Google Scholar

Visscher A. M., Meli P., Fonte S. J., Bonari G., Zerbe S., Wellstein C. Agroforestry enhances biological activity, diversity and soil‐based ecosystem functions in mountain agroecosystems of Latin America: a meta‐analysis. Global Change Biology 2023:30(1). https://doi.org/10.1111/gcb.17036 Search in Google Scholar

Jalón S. G. d., Burgess P. J., Graves A., Moreno G., McAdam J., Pottier É., Vityi A. How is agroforestry perceived in Europe? An assessment of positive and negative aspects by stakeholders. Agroforestry Systems 2017:92(4):829–848. https://doi.org/10.1007/s10457-017-0116-3 Search in Google Scholar

Herder M. d., Moreno G., Mosquera-Losada M. R., Palma J., Sidiropoulou A., Santiago-Freijanes J. J., Burgess P. J. Current extent and stratification of agroforestry in the European Union. Agriculture, Ecosystems & Environment 2017:241:121–132. https://doi.org/10.1016/j.agee.2017.03.005 Search in Google Scholar

Sarkhot D. V., Berhe A. A., Ghezzehei T. A. Impact of biochar enriched with dairy manure effluent on carbon and nitrogen dynamics. Journal of Environmental Quality 2012:41(4):1107–1114. https://doi.org/10.2134/jeq2011.0123 Search in Google Scholar

Wang J., Xiong Z., Kuzyakov Y. Biochar stability in soil: meta‐analysis of decomposition and priming effects. GCB Bioenergy 2015:8(3):512–523. https://doi.org/10.1111/gcbb.12266 Search in Google Scholar

Li H., Lu Z., Ma H., Jin S. Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil. Environmental Progress & Sustainable Energy 2013:33(3):941–946. https://doi.org/10.1002/ep.11867 Search in Google Scholar

Wang L., Deng J., Yang X., Hou D. Role of biochar toward carbon neutrality. Carbon Research 2023:2(2). https://doi.org/10.1007/s44246-023-00035-7 Search in Google Scholar

Liu Q., Liu B., Zhang Y., Hu T., Lin Z., Liu G., Xie Z. Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: options and mitigation strength in a global perspective. Global Change Biology 2019:25(6):2077–2093. https://doi.org/10.1111/gcb.14613 Search in Google Scholar

Ghorbani M., Neugschwandtner R. W., Soja G., Konvalina P., Kopecký M. Carbon fixation and soil aggregation affected by biochar oxidized with hydrogen peroxide: considering the efficiency of pyrolysis temperature. Sustainability 2023:15(9):7158. https://doi.org/10.3390/su15097158 Search in Google Scholar

Biederman L. A., Harpole W. S. Biochar and its effects on plant productivity and nutrient cycling: a meta‐analysis. GCB Bioenergy 2012:5(2):202–214. https://doi.org/10.1111/gcbb.12037 Search in Google Scholar

Wigan M. B. Impact of biochar application on chemical and microbial properties of soil. International Journal of Multidisciplinary: Applied Business and Education Research 2023:4(7):2503–2510. https://doi.org/10.11594/ijmaber.04.07.27 Search in Google Scholar

Keskinen R., Hyväluoma J., Sohlo L., Help H., Rasa K. Fertilizer and soil conditioner value of broiler manure biochars. Biochar 2019:1(3):259–270. https://doi.org/10.1007/s42773-019-00020-7 Search in Google Scholar

Hamad A. A. A., Ni L., Shaghaleh H., Elsadek E., Hamoud Y. A. Effect of carbon content in wheat straw biochar on N2O and CO2 emissions and pakchoi productivity under different soil moisture conditions. Sustainability 2023:15(6):5100. https://doi.org/10.3390/su15065100 Search in Google Scholar

Tisserant A., Cherubini F. Potentials, limitations, co-benefits, and trade-offs of biochar applications to soils for climate change mitigation. Land 2019:8(12):179. https://doi.org/10.3390/land8120179 Search in Google Scholar

Zhou H., Zhang D., Wang P., Liu X., Cheng K., Li L., Pan G. Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A Meta-analysis. Agriculture, Ecosystems & Environment 2017:239:80–89. https://doi.org/10.1016/j.agee.2017.01.006 Search in Google Scholar

Poeplau C., Don A. Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis. Agriculture, Ecosystems & Environment 2015:200:33–41. https://doi.org/10.1016/j.agee.2014.10.024 Search in Google Scholar

McCauley K., Barlow K. Regenerative agriculture: increasing plant diversity and soil carbon sequestration on agricultural landscapes. SURG Journal 2023:15(1). https://doi.org/10.21083/surg.v15i1.7196 Search in Google Scholar

Lugato E., Bampa F., Panagos P., Montanarella L., Jones A. Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices. Global Change Biology 2014:20(11):3557–3567. https://doi.org/10.1111/gcb.12551 Search in Google Scholar

Beillouin D., Ben-Ari T., Malézieux É., Seufert V., Makowski D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Global Change Biology 2021:27(19):4697–4710. https://doi.org/10.1111/gcb.15747 Search in Google Scholar

Gaudin A. C. M., Tolhurst T. N., Ker A. P., Janovicek K., Tortora C., Martin R. C., Deen W. M. Increasing crop diversity mitigates weather variations and improves yield stability. Plos One 2015:10(2):0113261. https://doi.org/10.1371/journal.pone.0113261 Search in Google Scholar

Weigel R., Koellner T., Poppenborg P., Bogner C. Crop diversity and stability of revenue on farms in central Europe: an analysis of big data from a comprehensive agricultural census in Bavaria. Plos One 2018:13(11):0207454. https://doi.org/10.1371/journal.pone.0207454 Search in Google Scholar

Ryschawy J., Choisis N., Choisis J., Gibon A. Paths to last in mixed crop–livestock farming: lessons from an assessment of farm trajectories of change. Animal 2013:7(4):673–681. https://doi.org/10.1017/s1751731112002091 Search in Google Scholar

Conant R. T., Cerri C. E. P., Osborne B. B., Paustian K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecological Applications 2017:27(2):662–668. https://doi.org/10.1002/eap.1473 Search in Google Scholar

McSherry M. E., Ritchie M. E. Effects of grazing on grassland soil carbon: a global review. Global Change Biology 2013:19(5):1347–1357. https://doi.org/10.1111/gcb.12144 Search in Google Scholar

Tessema B., Sommer R., Piikki K., Namirembe S., Notenbaert A. M. O., Tamene L., Paul B. K. Potential for soil organic carbon sequestration in grasslands in East African countries: a review. Grassland Science 2020:66(3):135–144. https://doi.org/10.1111/grs.12267 Search in Google Scholar

Kleppel G. S., Frank D. A. Structure and functioning of wild and agricultural grazing ecosystems: a comparative review. Frontiers in Sustainable Food Systems 2022:6. https://doi.org/10.3389/fsufs.2022.945514 Search in Google Scholar

Liebig M. A., Gross J., Kronberg S. L., Phillips R. Grazing management contributions to net global warming potential: a long‐term evaluation in the northern great plains. Journal of Environmental Quality 2010:39(3):799–809. https://doi.org/10.2134/jeq2009.0272 Search in Google Scholar

Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Life Sciences, other