This work is licensed under the Creative Commons Attribution 4.0 International License.
Commission presents recommendation for 2040 emissions reduction target to set the path to climate neutrality in 2050. [Online]. [Accessed 01.04.2024] Available: https://ec.europa.eu/commission/presscorner/detail/en/ip_24_588Search in Google Scholar
Bartzas G., Doula M., Hliaoutakis A., Papadopoulos N. S., Tsotsolas N. Low carbon certification of agricultural production using field GHG measurements. Development of an integrated framework with emphasis on mediterranean products. Case Studies in Chemical and Environmental Engineering 2024:9:100666. https://doi.org/10.1016/j.cscee.2024.100666Search in Google Scholar
Kreft C., Angst M., Huber R., Finger R. Farmers’ social networks and regional spillover effects in agricultural climate change mitigation. Climatic Change 2023:176:8. https://doi.org/10.1007/s10584-023-03484-6Search in Google Scholar
Voltr V., Menšík L., Hlísníkovský L., Hruška M., Pokorný E., Pospíšilová L. The soil organic matter in connection with soil properties and soil inputs. Agronomy 2021:11(4):779. https://doi.org/10.3390/agronomy11040779.Search in Google Scholar
Abdeldaym E. A., Traversa A., Cocozza C., Brunetti G. Effects of a 2‐year application of different residual biomasses on soil properties and potato yield. CLEAN – Soil, Air, Water 2018:46(12):1800261. https://doi.org/10.1002/clen.201800261Search in Google Scholar
Israel M. A., Amikuzuno J., Danso-Abbeam G. Assessing farmers’ contribution to greenhouse gas emission and the impact of adopting climate-smart agriculture on mitigation. Ecological Process 2020:9:51. https://doi.org/10.1186/s13717-020-00249-2Search in Google Scholar
Strapchuk S. І., Mykolenko O. P. Factors of Sustainable Intensification in Agriculture of Ukraine: Evidence from the Enterprises of the Kharkivska Oblast. Scientific Bulletin of Mukachevo State University Series Economics 2021:8:3:9–17. https://doi.org/10.52566/msu-econ.8(3).2021.9-17Search in Google Scholar
Armstrong J. H., Kamieniecki S. Sustainability Policy Research: A Review and Synthesis. Policy Studies Journal 2019:47(S1):S45–S65. https://doi.org/10.1111/psj.12320Search in Google Scholar
Promoting carbon farming through the CAP. EEB – The European Environmental Bureau [Online]. [Accessed 01.04.2024]. Available: https://eeb.org/library/promoting-carbon-farming-through-the-cap/Search in Google Scholar
Cuadros-Casanova I., Cristiano A., Biancolini D., Cimatti M., Sessa A. A., Mendez Angarita V. Y., Dragonetti C., Pacifici M., Rondinini C., Marco M. D. Opportunities and challenges for Common Agricultural Policy reform to support the European Green Deal. Conservation Biology 2023:37(3):e14052. https://doi.org/10.1111/cobi.14052Search in Google Scholar
Saikanth D. R. K., Kishore A. J., Sadineni T., Singh V., Upadhyay L., Kumar S., Panigrahi C. K. A review on exploring carbon farming as a strategy to mitigate greenhouse gas emissions. International Journal of Plant & Soil Science 2023:35(23):380–388. https://doi.org/10.9734/ijpss/2023/v35i234253.Search in Google Scholar
Tang K., He C., Ma C., Dong W. Does carbon farming provide a cost‐effective option to mitigate GHG emissions? Evidence from China. Australian Journal of Agricultural and Resource Economics 2019:63(3):575–592. https://doi.org/10.1111/1467-8489.12306.Search in Google Scholar
Doukas Y. E., Salvati L., Vardopoulos I. Unraveling the European agricultural policy sustainable development trajectory. Land 2023:12(9):1749. https://doi.org/10.3390/land12091749Search in Google Scholar
Gadzhiev N., Khasbulatova Z. S., Baysangurova A. A. Study of carbon sequestration processes in forestry on carbon farms. BIO Web of Conferences 2023:63:07006. https://doi.org/10.1051/bioconf/20236307006.Search in Google Scholar
Rijal S. Agroforestry system: approaches for climate change mitigation and adaptation. Big Data in Agriculture 2019:1(2):23–25. https://doi.org/10.26480/bda.02.2019.23.25.Search in Google Scholar
Bumbiere K., Sanchez F. A. D., Pubule J., Blumberga D. Development and assessment of carbon farming solutions. Environmental and Climate Technologies 2022:26(1):898–916. https://doi.org/10.2478/rtuect-2022-0068.Search in Google Scholar
Van Hoof S. Climate change mitigation in agriculture: barriers to the adoption of carbon farming policies in the EU. Sustainability 2023:15(13):10452. https://doi.org/10.3390/su151310452Search in Google Scholar
Dumbrell N. P., Kragt M., Gibson F. What carbon farming activities are farmers likely to adopt? A best – worst scaling survey. Land Use Policy 2016:54:29–37. https://doi.org/10.1016/j.landusepol.2016.02.002.Search in Google Scholar
Reidsma P., Wolf J., Kanellopoulos A., Schaap B., Mandryk M., Verhagen A., Ittersum M. Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands. Environmental Research Letters 2015:10(4):045004. https://doi.org/10.1088/1748-9326/10/4/045004Search in Google Scholar
Machmuller M. B., Kramer M. G., Cyle K. T., Hill N., Hancock D. W., Thompson A. Emerging land use practices rapidly increase soil organic matter. Nature Communications 2015:6(1):6995. https://doi.org/10.1038/ncomms7995Search in Google Scholar
Nevalainen O., Niemitalo O., Fer I., Juntunen A., Mattila T., Koskela O., Liski J. Towards agricultural soil carbon monitoring, reporting, and verification through the field observatory network (FiON). Geoscientific Instrumentation, Methods and Data Systems 2022:11(1):93–109. https://doi.org/10.5194/gi-11-93-2022Search in Google Scholar
Avasiloaiei D. I., Calara M., Brezeanu P. M., Gruda N. S., Brezeanu C. The evaluation of carbon farming strategies in organic vegetable cultivation. Agronomy 2023:13(9):2406. https://doi.org/10.3390/agronomy13092406Search in Google Scholar
Scotton M. Seed production of semi‐natural grasslands: amount and variability in an unfertilized upright brome and a fertilized tall oat-grass meadow. Grass and Forage Science 2020:75(4):409–423. https://doi.org/10.1111/gfs.12502Search in Google Scholar
Kasirao G., Himavarsha P., Tomar S., Sharma A. Carbon farming – the healing lungs of future agriculture: a review. Pollution Research 2023:42(3):331–334. https://doi.org/10.53550/pr.2023.v42i03.004Search in Google Scholar
Evans M. C., Carwardine J., Fensham R. J., Butler D., Wilson K. A., Possingham H. P., Martin T. G. Carbon farming via assisted natural regeneration as a cost-effective mechanism for restoring biodiversity in agricultural landscapes. Environmental Science & Policy 2015:50:114–129. https://doi.org/10.1016/j.envsci.2015.02.003.Search in Google Scholar
Gan Y., Liang C., Chai Q., Lemke R., Campbell C. A., Zentner R. P. Improving farming practices reduces the carbon footprint of spring wheat production. Nature Communications 2014:5(1):5012. https://doi.org/10.1038/ncomms6012Search in Google Scholar
Page M. J., Moher D., Bossuyt P. M., Boutron I., Hoffmann T., Mulrow C. D., McKenzie J. E. Prisma 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 2021:372:n160. https://doi.org/10.1136/bmj.n160Search in Google Scholar
Ardern C. L., Büttner F., Andrade R., Weir A., Ashe M. C., Holden S., Winters M. Implementing the 27 Prisma 2020 statement items for systematic reviews in the sport and exercise medicine, musculoskeletal rehabilitation and sports science fields: the persist (implementing prisma in exercise, rehabilitation, sports medicine and sports science) guidance. British Journal of Sports Medicine 2021:56(4):175–195. https://doi.org/10.1136/bjsports-2021-103987Search in Google Scholar
Aguinis H., Ramani R. S., Alabduljader N. Best-practice recommendations for producers, evaluators, and users of methodological literature reviews. Organizational Research Methods 2020:26(1):46–76. https://doi.org/10.1177/1094428120943281Search in Google Scholar
Commission sets the carbon farming initiative in motion - European Commission [Online]. [Accessed 01.04.2024]. Available: https://climate.ec.europa.eu/news-your-voice/news/commission-sets-carbon-farming-initiative-motion-2021-04-27_enSearch in Google Scholar
Carbon Farming [Online]. [Accessed 01.04.2024]. Available: https://climate.ec.europa.eu/eu-action/sustainable-carbon-cycles/carbon-farming_enSearch in Google Scholar
Cavalaris C. Rotational tillage practices to deal with soil compaction in carbon farming. Soil Systems 2023:7(4):90. https://doi.org/10.3390/soilsystems7040090Search in Google Scholar
Melero S., López-Garrido R., Murillo J., Moreno F. Conservation tillage: short- and long-term effects on soil carbon fractions and enzymatic activities under Mediterranean conditions. Soil and Tillage Research 2009:104(2):292–298. https://doi.org/10.1016/j.still.2009.04.001Search in Google Scholar
Álvaro‐Fuentes J., López M., Arrúe J., Moret D. Tillage and cropping effects on soil organic carbon in Mediterranean semiarid agroecosystems: Testing the Century model. Agriculture Ecosystems & Environment 2009:134(3–4):211–217. https://doi.org/10.1016/j.agee.2009.07.001Search in Google Scholar
Li Y., Zhou L., Chang S., Cui S., Jagadamma S., Ghiglieno Q., Cai Y. Residue retention promotes soil carbon accumulation in minimum tillage systems: implications for conservation agriculture. The Science of the Total Environment 2020:740:140147. https://doi.org/10.1016/j.scitotenv.2020.140147Search in Google Scholar
Kyriakarakos G. Carbon farming: bridging technology development with policy goals. Sustainability 2024:16(5):1903. https://doi.org/10.3390/su16051903Search in Google Scholar
Block J. Farmers’ willingness to participate in a carbon sequestration program – a discrete choice experiment. Environmental Management 2024:74(2):332–349. https://doi.org/10.1007/s00267-024-01963-9Search in Google Scholar
Rosinger C., Keiblinger K., Bieber M., Bernardini L., Huber S., Mentler A., Bodner G. On-farm soil organic carbon sequestration potentials are dominated by site effects, not by management practices. Geoderma 2023:433:116466. https://doi.org/10.1016/j.geoderma.2023.116466Search in Google Scholar
Haddaway N., Hedlund K., Jackson L., Kätterer T., Lugato E., Thomsen I., Isberg, P. How does tillage intensity affect soil organic carbon? A systematic review protocol. Environmental Evidence 2016:5:1. https://doi.org/10.1186/s13750-016-0052-0Search in Google Scholar
Mihelič R. Effects of transitioning from conventional to organic farming on soil organic carbon and microbial community: a comparison of long-term non-inversion minimum tillage and conventional tillage. Biology and Fertility of Soils 2024:60(3):341–355. https://doi.org/10.1007/s00374-024-01796-ySearch in Google Scholar
Sae-Tun O., Keiblinger K., Rosinger C., Mentler A., Bodner G. Characterization of aggregate-stabilized dissolved organic matter release – a novel approach to determine soil health advances of conservation farming systems. Plant and Soil 2022:488(1–2):101–119. https://doi.org/10.1007/s11104-022-05713-wSearch in Google Scholar
Pesce S. A modified version of RothC to model the direct and indirect effects of rice straw mulching on soil carbon dynamics, calibrated in two Valencian citrus orchards. Soil Systems 2024:8(1):12. https://doi.org/10.3390/soilsystems8010012Search in Google Scholar
Taghikhah F., Costanza R., Voinov A. DAESim: a dynamic agro-ecosystem simulation model for natural capital assessment. Ecological Modelling 2022:468:109930. https://doi.org/10.1016/j.ecolmodel.2022.109930Search in Google Scholar
Ghaley B., Rusu T., Sandén T., Spiegel H., Menta C., Visioli G., Henriksen C. Assessment of benefits of conservation agriculture on soil functions in arable production systems in Europe. Sustainability 2018:10(3):794. https://doi.org/10.3390/su10030794Search in Google Scholar
Paul C., Bartkowski B., Dönmez C., Don A., Mayer S., Steffens M., Helming K. Carbon farming: are soil carbon certificates a suitable tool for climate change mitigation? Journal of Environmental Management 2023:330:117142. https://doi.org/10.1016/j.jenvman.2022.117142Search in Google Scholar
Longo M., Ferro N., Izaurralde R., Furlan L., Chiarini F., Morari F. Deep soc stock dynamics under contrasting management systems: is the epic model ready for carbon farming implementation? European Journal of Agronomy 2023:145:126771. https://doi.org/10.1016/j.eja.2023.126771Search in Google Scholar
Smith P. Olesen J. Synergies between the mitigation of, and adaptation to, climate change in agriculture. The Journal of Agricultural Science 2010:148(5):543–552. https://doi.org/10.1017/s0021859610000341Search in Google Scholar
Mattila T. Do carbon farming practices build bioavailable nitrogen pools? Soil Use and Management 2023:39(4):1532– 1544. https://doi.org/10.1111/sum.12930Search in Google Scholar
Olsson L. Jerneck A. Farmers fighting climate change – from victims to agents in subsistence livelihoods. Wiley Interdisciplinary Reviews Climate Change 2010:1(3):363–373. https://doi.org/10.1002/wcc.44Search in Google Scholar
Begum K., Zornoza R., Farina R., Lemola R., Álvaro-Fuentes J., Cerasuolo M. Modeling soil carbon under diverse cropping systems and farming management in contrasting climatic regions in Europe. Frontiers in Environmental Science 2022:10. https://doi.org/10.3389/fenvs.2022.819162Search in Google Scholar
Alcalá-Herrera R., Moreno B., Aguirrebengoa M., Winter S., Robles-Cruz A.B., Ramos-Font M.E., Benítez E. Role of Agricultural Management in the Provision of Ecosystem Services in Warm Climate Vineyards: Functional Prediction of Genes Involved in Nutrient Cycling and Carbon Sequestration. Plants 2023:12(13):527. https://doi.org/10.3390/plants12030527Search in Google Scholar
Aguilera E., Guzmán G. I., Alonso A. M. Greenhouse gas emissions from conventional and organic cropping systems in Spain. I. Herbaceous crops. Agronomy for Sustainable Development 2014:35(2):713–724. https://doi.org/10.1007/s13593-014-0267-9Search in Google Scholar
Ghiglieno I., Simonetto A., Facciano L., Tonni M., Donna P., Valenti L., Gilioli G. Comparing the carbon footprint of conventional and organic vineyards in northern Italy. Sustainability 2023:15(6):5252. https://doi.org/10.3390/su15065252Search in Google Scholar
Drexler S., Don A. Carbon sequestration potential in hedgerow soils: results from 23 sites in Germany. Geoderma 2024:445:116878. https://doi.org/10.1016/j.geoderma.2024.116878Search in Google Scholar
Attia A., Marohn C., Shawon A. R., de Kock A., Strassemeyer J., Feike T. Do rotations with cover crops increase yield and soil organic carbon? – A modeling study in southwest Germany. Agriculture, Ecosystems & Environment 2024:375:109167. https://doi.org/10.1016/j.agee.2024.109167Search in Google Scholar
Mattila T. J., Hagelberg E., Söderlund S., and Joona J. How farmers approach soil carbon sequestration? Lessons learned from 105 carbon-farming plans. Soil and Tillage Research 2022:215:105204. https://doi.org/10.1016/j.still.2021.105204Search in Google Scholar
Vicente-Vicente J. L., García‐Ruiz R., Francaviglia R., Aguilera E., Smith P. Soil carbon sequestration rates under Mediterranean woody crops using recommended management practices: A meta-analysis. Agriculture, Ecosystems & Environment 2016:235:204–214. https://doi.org/10.1016/j.agee.2016.10.024Search in Google Scholar
Kim J. H., Jobbágy E. G., Richter D., Trumbore S. E., Jackson R. B. Agricultural acceleration of soil carbonate weathering. Global Change Biology 2020:26(10):5988–6002. https://doi.org/10.1111/gcb.15207Search in Google Scholar
Doyeni M. O., Barčauskaitė K., Buneviciene K., Venslauskas K., Navickas K., Rubežius M., Tilvikienė V. Nitrogen flow in livestock waste system towards an efficient circular economy in agriculture. Waste Management Research: The Journal for a Sustainable Circular Economy 2022:41(3):701–712. https://doi.org/10.1177/0734242x221123484Search in Google Scholar
Herrera R., Moreno B., Aguirrebengoa M., Winter S., Robles-Cruz A. B., Ramos-Font M. E., Benítez E. Role of agricultural management in the provision of ecosystem services in warm climate vineyards: functional prediction of genes involved in nutrient cycling and carbon sequestration. Plants 2023:12(3):527. https://doi.org/10.3390/plants12030527Search in Google Scholar
Koppelmäki K., Lamminen M., Helenius J., Schulte R. P. Smart integration of food and bioenergy production delivers on multiple ecosystem services. Food and Energy Security 2021:10(2):351–367. https://doi.org/10.1002/fes3.279Search in Google Scholar
Paul C., Bartkowski B., Dönmez C., Don A., Mayer S., Steffens M., Helming, K. Carbon farming: are soil carbon certificates a suitable tool for climate change mitigation? Journal of Environmental Management 2023:330:117142. https://doi.org/10.1016/j.jenvman.2022.117142Search in Google Scholar
Block J. B., Danne M., Mußhoff O. Farmers’ willingness to participate in a carbon sequestration program – a discrete choice experiment. Environmental Management 2024:74(2):332–349. https://doi.org/10.1007/s00267-024-01963-9Search in Google Scholar
Ruf T. Emmerling C. Biomass partitioning and nutrient fluxes in silphium perfoliatum and silage maize cropping systems. Nutrient Cycling in Agroecosystems 2022:124(3):389–405. https://doi.org/10.1007/s10705-022-10242-0Search in Google Scholar
Carter M. S., Hauggaard-Nielsen H., Heiske S., Jensen M. B., Thomsen S. T., Schmidt J. E., Ambus, P. Consequences of field N2O emissions for the environmental sustainability of plant‐based biofuels produced within an organic farming system. GCB Bioenergy 2011:4(4):435–452. https://doi.org/10.1111/j.1757-1707.2011.01132.xSearch in Google Scholar
Wu F., Pfenninger S., Muller A. Land-free bioenergy from circular agroecology—a diverse option space and trade-offs. Environmental Research Letters 2024:19(4):044044. https://doi.org/10.1088/1748-9326/ad33d5Search in Google Scholar
Rosinger C., Bodner G., Bernardini L. G., Huber S., Mentler A., Sae-Tun O., Keiblinger, K. M. Benchmarking carbon sequestration potentials in arable soils by on-farm research on innovative pioneer farms. Plant and Soil 2022:488(1–2):137–156. https://doi.org/10.1007/s11104-022-05626-8Search in Google Scholar
Volungevičius J., Feiza V., Amalevičiūtė-Volungė K., Liaudanskienė I., Šlepetienė A., Kuncevičius A., Poškienė J. Transformations of different soils under natural and anthropogenized land management. Zemdirbyste-Agriculture 2019:106(1):3–14. https://doi.org/10.13080/z-a.2019.106.001Search in Google Scholar
Chen X., Hu Y., Xia Y., Zheng S., Ma C., Rui Y., Su Y. Contrasting pathways of carbon sequestration in paddy and upland soils. Global Change Biology 2021:27(11):2478–2490. https://doi.org/10.1111/gcb.15595Search in Google Scholar
Sae-Tun O., Keiblinger K. M., Rosinger C., Mentler A., Mayer H., Bodner G. Characterization of aggregate-stabilized dissolved organic matter release - a novel approach to determine soil health advances of conservation farming systems. Plant and Soil 2022:488(1–2):101–119. https://doi.org/10.1007/s11104-022-05713-wSearch in Google Scholar
Hirte J., Walder F., Heß J., Büchi L., Colombi T., Heijden M. G. v. d., Mayer J. Enhanced root carbon allocation through organic farming is restricted to topsoils. Science of the Total Environment 2021:755:143551. https://doi.org/10.1016/j.scitotenv.2020.143551Search in Google Scholar
Valujeva K., O’Sullivan L., Gutzler C., Fealy R., Schulte R. P. The challenge of managing soil functions at multiple scales: an optimisation study of the synergistic and antagonistic trade-offs between soil functions in Ireland. Land Use Policy 2016:58:335–347. https://doi.org/10.1016/j.landusepol.2016.07.028Search in Google Scholar
Zanella A., Bolzonella C., Lowenfels J., Ponge J., Bouché M. B., Saha D., Fukuoka M. Humusica 2, article 19: Techno humus systems and global change–conservation agriculture and 4/1000 proposal. Applied Soil Ecology 2018:122:271– 296. https://doi.org/10.1016/j.apsoil.2017.10.036Search in Google Scholar
Schulte R. P., O’Sullivan L., Vrebos D., Bampa F., Jones A., Staes J. Demands on land: mapping competing societal expectations for the functionality of agricultural soils in Europe. Environmental Science & Policy 2019:100:113–125. https://doi.org/10.1016/j.envsci.2019.06.011Search in Google Scholar
Soinne H., Hyyrynen M., Jokubė M., Keskinen R., Hyväluoma J., Pihlainen S., Heikkinen J. High organic carbon content constricts the potential for stable organic carbon accrual in mineral agricultural soils in Finland. Journal of Environmental Management 2024:352:119945. https://doi.org/10.1016/j.jenvman.2023.119945Search in Google Scholar
Gantlett R., Bishop J., Jones H. E., Lukac M. Modern arable and diverse ley farming systems can increase soil organic matter faster than global targets. Ren Agriculture and Food Systems 2024:39. https://doi.org/10.1017/s1742170524000103Search in Google Scholar
Bessou C., Basset-Mens C., Tran T., Benoist A. LCA applied to perennial cropping systems: a review focused on the farm stage. The Int. Journal of Life Cycle Assessment 2012:18(2):340–361. https://doi.org/10.1007/s11367-012-0502-zSearch in Google Scholar
Zucaro A., Forte A., Fagnano M., Bastianoni S., Basosi R., Fierro A. Comparative attributional life cycle assessment of annual and perennial lignocellulosic feedstocks production under Mediterranean climate for biorefinery framework. Integrated Environmental Assessment and Management 2015:11(3):397–403. https://doi.org/10.1002/ieam.1604Search in Google Scholar
Ledo A., Smith P., Zerihun A., Whitaker J., Vicente-Vicente J. L., Qin Z., Hillier J. Changes in soil organic carbon under perennial crops. Global Change Biology 2020:26(7):4158–4168. https://doi.org/10.1111/gcb.15120Search in Google Scholar
Means M., Crews T. E., Souza L. Annual and perennial crop composition impacts on soil carbon and nitrogen dynamics at two different depths. Renewable Agriculture and Food Systems 2022:37(5):437–444. https://doi.org/10.1017/s1742170522000084Search in Google Scholar
Adebiyi J. A., Olabisi L. S., Snapp S. S. Understanding perennial wheat adoption as a transformative technology: evidence from the literature and farmers. Renewable Agriculture and Food Systems 2015:31(2):101–110. https://doi.org/10.1017/s1742170515000150Search in Google Scholar
Scott E. I., Toensmeier E., Iutzi F., Rosenberg N., Lovell S. T., Jordan N. R., Leib E. B. Policy pathways for perennial agriculture. Frontiers in Sustainable Food Systems 2022:6. https://doi.org/10.3389/fsufs.2022.983398Search in Google Scholar
Danso-Abbeam G., Amin K. M., Ogundeji A. A. Enhancing household welfare through perennial crop production in northern Ghana. Sustainability 2022:15(1):451. https://doi.org/10.3390/su15010451Search in Google Scholar
Kantar M. B., Tyl C., Dorn K. M., Zhang X., Jungers J. M., Kaser J. M., Wyse D. L. Perennial grain and oilseed crops. Annual Review of Plant Biology 2016:67(1):703–729. https://doi.org/10.1146/annurev-arplant-043015-112311Search in Google Scholar
Herder M. d., Moreno G., Mosquera-Losada M. R., Palma J., Sidiropoulou A., Santiago-Freijanes J. J., Burgess P. J. Current extent and stratification of agroforestry in the European Union. Agriculture, Ecosystems & Environment 2017:241:121–132. https://doi.org/10.1016/j.agee.2017.03.005Search in Google Scholar
Tefera Y. Potential of agroforestry for climate change mitigation through carbon sequestration: review paper. Agricultural Research & Technology 2019:22(3):556198. https://doi.org/10.19080/artoaj.2019.22.556196Search in Google Scholar
Torralba M., Fagerholm N., Burgess P. J., Moreno G., Plieninger T. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture, Ecosystems & Environment 2016:230:150–161. https://doi.org/10.1016/j.agee.2016.06.002Search in Google Scholar
Ahmad F., Talukdar N. R., Biradar C., Dhyani S. K., Rizvi J. Harnessing the potentiality of farm landscape for trees based on satellite evaluation: a GIS modeling perspective. Anthropocene Science 2022:1(2):278–294. https://doi.org/10.1007/s44177-022-00025-1Search in Google Scholar
Visscher A. M., Meli P., Fonte S. J., Bonari G., Zerbe S., Wellstein C. Agroforestry enhances biological activity, diversity and soil‐based ecosystem functions in mountain agroecosystems of Latin America: a meta‐analysis. Global Change Biology 2023:30(1). https://doi.org/10.1111/gcb.17036Search in Google Scholar
Jalón S. G. d., Burgess P. J., Graves A., Moreno G., McAdam J., Pottier É., Vityi A. How is agroforestry perceived in Europe? An assessment of positive and negative aspects by stakeholders. Agroforestry Systems 2017:92(4):829–848. https://doi.org/10.1007/s10457-017-0116-3Search in Google Scholar
Herder M. d., Moreno G., Mosquera-Losada M. R., Palma J., Sidiropoulou A., Santiago-Freijanes J. J., Burgess P. J. Current extent and stratification of agroforestry in the European Union. Agriculture, Ecosystems & Environment 2017:241:121–132. https://doi.org/10.1016/j.agee.2017.03.005Search in Google Scholar
Sarkhot D. V., Berhe A. A., Ghezzehei T. A. Impact of biochar enriched with dairy manure effluent on carbon and nitrogen dynamics. Journal of Environmental Quality 2012:41(4):1107–1114. https://doi.org/10.2134/jeq2011.0123Search in Google Scholar
Wang J., Xiong Z., Kuzyakov Y. Biochar stability in soil: meta‐analysis of decomposition and priming effects. GCB Bioenergy 2015:8(3):512–523. https://doi.org/10.1111/gcbb.12266Search in Google Scholar
Li H., Lu Z., Ma H., Jin S. Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil. Environmental Progress & Sustainable Energy 2013:33(3):941–946. https://doi.org/10.1002/ep.11867Search in Google Scholar
Wang L., Deng J., Yang X., Hou D. Role of biochar toward carbon neutrality. Carbon Research 2023:2(2). https://doi.org/10.1007/s44246-023-00035-7Search in Google Scholar
Liu Q., Liu B., Zhang Y., Hu T., Lin Z., Liu G., Xie Z. Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: options and mitigation strength in a global perspective. Global Change Biology 2019:25(6):2077–2093. https://doi.org/10.1111/gcb.14613Search in Google Scholar
Ghorbani M., Neugschwandtner R. W., Soja G., Konvalina P., Kopecký M. Carbon fixation and soil aggregation affected by biochar oxidized with hydrogen peroxide: considering the efficiency of pyrolysis temperature. Sustainability 2023:15(9):7158. https://doi.org/10.3390/su15097158Search in Google Scholar
Biederman L. A., Harpole W. S. Biochar and its effects on plant productivity and nutrient cycling: a meta‐analysis. GCB Bioenergy 2012:5(2):202–214. https://doi.org/10.1111/gcbb.12037Search in Google Scholar
Wigan M. B. Impact of biochar application on chemical and microbial properties of soil. International Journal of Multidisciplinary: Applied Business and Education Research 2023:4(7):2503–2510. https://doi.org/10.11594/ijmaber.04.07.27Search in Google Scholar
Keskinen R., Hyväluoma J., Sohlo L., Help H., Rasa K. Fertilizer and soil conditioner value of broiler manure biochars. Biochar 2019:1(3):259–270. https://doi.org/10.1007/s42773-019-00020-7Search in Google Scholar
Hamad A. A. A., Ni L., Shaghaleh H., Elsadek E., Hamoud Y. A. Effect of carbon content in wheat straw biochar on N2O and CO2 emissions and pakchoi productivity under different soil moisture conditions. Sustainability 2023:15(6):5100. https://doi.org/10.3390/su15065100Search in Google Scholar
Tisserant A., Cherubini F. Potentials, limitations, co-benefits, and trade-offs of biochar applications to soils for climate change mitigation. Land 2019:8(12):179. https://doi.org/10.3390/land8120179Search in Google Scholar
Zhou H., Zhang D., Wang P., Liu X., Cheng K., Li L., Pan G. Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A Meta-analysis. Agriculture, Ecosystems & Environment 2017:239:80–89. https://doi.org/10.1016/j.agee.2017.01.006Search in Google Scholar
Poeplau C., Don A. Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis. Agriculture, Ecosystems & Environment 2015:200:33–41. https://doi.org/10.1016/j.agee.2014.10.024Search in Google Scholar
McCauley K., Barlow K. Regenerative agriculture: increasing plant diversity and soil carbon sequestration on agricultural landscapes. SURG Journal 2023:15(1). https://doi.org/10.21083/surg.v15i1.7196Search in Google Scholar
Lugato E., Bampa F., Panagos P., Montanarella L., Jones A. Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices. Global Change Biology 2014:20(11):3557–3567. https://doi.org/10.1111/gcb.12551Search in Google Scholar
Beillouin D., Ben-Ari T., Malézieux É., Seufert V., Makowski D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Global Change Biology 2021:27(19):4697–4710. https://doi.org/10.1111/gcb.15747Search in Google Scholar
Gaudin A. C. M., Tolhurst T. N., Ker A. P., Janovicek K., Tortora C., Martin R. C., Deen W. M. Increasing crop diversity mitigates weather variations and improves yield stability. Plos One 2015:10(2):0113261. https://doi.org/10.1371/journal.pone.0113261Search in Google Scholar
Weigel R., Koellner T., Poppenborg P., Bogner C. Crop diversity and stability of revenue on farms in central Europe: an analysis of big data from a comprehensive agricultural census in Bavaria. Plos One 2018:13(11):0207454. https://doi.org/10.1371/journal.pone.0207454Search in Google Scholar
Ryschawy J., Choisis N., Choisis J., Gibon A. Paths to last in mixed crop–livestock farming: lessons from an assessment of farm trajectories of change. Animal 2013:7(4):673–681. https://doi.org/10.1017/s1751731112002091Search in Google Scholar
Conant R. T., Cerri C. E. P., Osborne B. B., Paustian K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecological Applications 2017:27(2):662–668. https://doi.org/10.1002/eap.1473Search in Google Scholar
McSherry M. E., Ritchie M. E. Effects of grazing on grassland soil carbon: a global review. Global Change Biology 2013:19(5):1347–1357. https://doi.org/10.1111/gcb.12144Search in Google Scholar
Tessema B., Sommer R., Piikki K., Namirembe S., Notenbaert A. M. O., Tamene L., Paul B. K. Potential for soil organic carbon sequestration in grasslands in East African countries: a review. Grassland Science 2020:66(3):135–144. https://doi.org/10.1111/grs.12267Search in Google Scholar
Kleppel G. S., Frank D. A. Structure and functioning of wild and agricultural grazing ecosystems: a comparative review. Frontiers in Sustainable Food Systems 2022:6. https://doi.org/10.3389/fsufs.2022.945514Search in Google Scholar
Liebig M. A., Gross J., Kronberg S. L., Phillips R. Grazing management contributions to net global warming potential: a long‐term evaluation in the northern great plains. Journal of Environmental Quality 2010:39(3):799–809. https://doi.org/10.2134/jeq2009.0272Search in Google Scholar