Open Access

Decision-making Algorithm for Waste Recovery Options. Review on Textile Waste Derived Products


Cite

[1] Pilar López-Portillo M., Martínez-Jiménez G., Ropero-Moriones E., Concepción Saavedra-Serrano M., Waste treatments in the European Union: A comparative analysis across its member states. Helion 2021:7(12):e08645. https://doi.org/10.1016/j.heliyon.2021.e08645 Search in Google Scholar

[2] Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste. Official Journal of the European Union. 2018: L 150/108. http://data.europa.eu/eli/dir/2018/851/oj Jäämaa L., Kaipia R. The first mile problem in the circular economy supply chains – Collecting recyclable textiles from consumers. Waste Management 2022:141:173–182. https://doi.org/10.1016/j.wasman.2022.01.012 Search in Google Scholar

[3] Schmutz M., Som C. Identifying the potential for circularity of industrial textile waste generated within Swiss companies. Resources, Conservation and Recycling 2022:182:106132. Ribul M., Lanot A., Tommencioni Pisapia C., Purnell P., McQueen-Mason S. J., Baurley S. Mechanical, chemical, biological: Moving towards closed-loop bio-based recycling in a circular economy of sustainable textiles. Journal of Cleaner Production 2021:326:129325. https://doi.org/10.1016/j.jclepro.2021.129325 Search in Google Scholar

[4] Kahoush M., Kadi N. Towards sustainable textile sector: Fractionation and separation of cotton/polyester fibers from blended textile waste. Sustainable Materials and technologies 2022:34:e00513. Search in Google Scholar

[5] Generation of waste by waste category, hazardousness and NACE Rev. 2 activity. [Online]. [Accessed 22.04.2022]. Available: https://ec.europa.eu/eurostat/databrowser/view/env_wasgen/default/table?lang=en Search in Google Scholar

[6] Ellen MacArthur Foundation, 2017. [Online]. [Accessed 07.04.2022]. Available: https://ellenmacarthurfoundation.org/a-new-textiles-economy Search in Google Scholar

[7] Yousef S., Tatariants M., Tichonovas M., Sarwar Z., Jonuškienė I., Kliucininkas L. A new strategy for using textile waste as a sustainable source of recovered cotton. Resources, Conservation and Recycling 2019:145:359–369. https://doi.org/10.1016/j.resconrec.2019.02.031 Search in Google Scholar

[8] Yu I. K. M., Chen H., Abeln F., Auta H., Fan J., Budarin V. L., Clark J. H., Parsons S., Chuck C. J., Zhang S., Luo G., Tsang D. C. W. Chemicals from lignocellulosic biomass: a critical comparison between biochemical, microwave and thermochemical conversion methods. Critical Reviews in Environmental Science and Technology 2020:51(14):1479–1532. https://doi.org/10.1080/10643389.2020.1753632 Search in Google Scholar

[9] Subramanian K., Chopra S. S., Cakin E., Li X., Sze Ki Lin K. Environmental life cycle assessment of textile bio-recycling – valorizing cotton-polyester textile waste to pet fiber and glucose syrup. Resources, Conservation and Recycling 2020:161:104989. https://doi.org/10.1016/j.resconrec.2020.104989 Search in Google Scholar

[10] Roos, S., Sandin, G., Peters, G., Bjorn, S., Bour, G. S., Perzon, E., Jonson, C. White paper on textile recycling. Mistra Future Fashion, 2019. Search in Google Scholar

[11] Leal Filho W., Ellams D., Han S., Tyler D., Boiten V. J., Paço A., Moora H., Balogun A.-L. A review of the socioeconomic advantages of textile recycling. Journal of Cleaner Production 2019:218:10–20. https://doi.org/10.1016/j.jclepro.2019.01.210 Search in Google Scholar

[12] Kunchimon S. Z., Tausif M., Goswami P., Cheung V. Polyamide 6 and thermoplastic polyurethane recycled hybrid Fibres via twin-screw melt extrusion. Journal of Polymer Research 2019:26:162. https://doi.org/10.1007/s10965-019-1827-0 Sherwood J. Closed-loop recycling of polymers using solvents: remaking plastics for a circular economy. Johnson Matthey Technology Review 2020:64(1):4–15. https://doi.org/10.1595/205651319X15574756736831 Search in Google Scholar

[13] Ostlund Å., Wedin H., Bolin L., Berlin, J., Jonsson C., Posner S., Smuk L., Eriksson M., Sandin G. Textilåtervinning. Naturvårdsverket, 2015. Holea G., Hole A. Improving recycling of textiles based on lessons from policies for other recyclable materials. Sustainable Production and Consumption 2020:23:42–51. https://doi.org/10.1016/j.spc.2020.04.005 Search in Google Scholar

[14] Biyada S., Merzouki M., Dėmčėnko T., Vasiliauskienė D., Urbonavičius J., Marčiulaitienė E., Vasarevičius S., Benlemlih M. Evolution of Microbial Composition and Enzymatic Activities during the Composting of Textile Waste. Applied Sciences 2020:10(11):3758. https://doi.org/10.3390/app10113758 Search in Google Scholar

[15] Vázquez M.A., Soto M. The efficiency of home composting programmes and compost quality. Waste Management 2017:64:39–50. https://doi.org/10.1016/j.wasman.2017.03.022 Search in Google Scholar

[16] Ozuysal A., Akinci G. The assessment of refuse derived fuel (RDF) production from textile waste. Eurasian Journal of Environmental Research 2019:3(2):27–32. Search in Google Scholar

[17] Hasanzadeh E., Mirmohamadsadeghi S., Karimi K. Enhancing energy production from waste textile by hydrolysis of synthetic parts. Fuel 2018:218:41–48. https://doi.org/10.1016/j.fuel.2018.01.035 Search in Google Scholar

[18] Wang H., Kaur G., Pensupa N., Uisan K., Du C., Yang X., Sze Ki Lin C. Textile waste valorization using submerged filamentous fungal fermentation. Process Safety and Environmental Protection 2018:118:143–151. https://doi.org/10.1016/j.psep.2018.06.038 Asdrubali F., D’Alessandro F., Schiavoni S. A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies 2015:4:1–17. https://doi.org/10.1016/j.susmat.2015.05.002 Search in Google Scholar

[19] UltraTouch™ Denim Insulation. [Online]. [Accessed 12.04.2022]. Available: http://www.bondedlogic.com/ultratouch-denim-insulation/ Search in Google Scholar

[20] Briga-Sá A., Gaibor N., Magalhães L., Pinto T., Leitão D. Thermal performance characterization of cement-based lightweight blocks incorporating textile waste. Construction and Building Materials 2022:321:126330. https://doi.org/10.1016/j.conbuildmat.2022.126330 Search in Google Scholar

[21] Palme A., Peterson A., de la Motte H., Theliander H., Brelid H. Development of an efficient route for combined recycling of PET and cotton from mixed fabrics. Textiles and Clothing Sustainability 2017:3:Art4. https://doi.org/10.1186/s40689-017-0026-9 Search in Google Scholar

[22] Köksalan M., Wallenius J., Zionts S. An Early History of Multiple Criteria Decision Making. Journal of Multi-Criteria Decision Analysis 2013:20:87–94. https://doi.org/10.1002/mcda.1481 Search in Google Scholar

[23] Vamza I., Valters K., Blumberga D. Multi-Criteria Analysis of Lignocellulose Substrate Pre-Treatment. Environmental and Climate Technologies 2020:24(3):483–492. https://doi.org/10.2478/rtuect-2020-0118 Search in Google Scholar

[24] Zlaugotne B., Zihare L., Balode L., Kalnbalkite A., Khabdullin A., Blumberga D. Multi-Criteria Decision Analysis Methods Comparison. Environmental and Climate Technologies 2020:24(1):454–471. https://doi.org/10.2478/rtuect-2020-0028 Search in Google Scholar

[25] Vanaga R., Blumberga A., Gusca J., Blumberga B. Choosing the best nature’s strategy with the highest thermodynamic potential for application in building thermal envelope using MCA analysis. Energy Procedia 2018:152:450–455. https://doi.org/10.1016/j.egypro.2018.09.252 Search in Google Scholar

[26] Rozentale L., Blumberga D. Cost-Benefit and Multi-Criteria Analysis of Wind Energy Parks Development Potential in Latvia. Environmental and Climate Technologies 2021:25(1):1229–1240. https://doi.org/10.2478/rtuect-2021-0093 Search in Google Scholar

[27] Adem Esmail B., Geneletti D. Multi-criteria decision analysis for nature conservation: A review of 20 years of applications. Methods in Ecology and Evolution 2018:9(1):42–53. https://doi.org/10.1111/2041-210X.12899 Search in Google Scholar

[28] Saaty T. L. Deriving the AHP 1-9 scale from first principles. Proc. 6th ISAHP, 2001. https://doi.org/10.13033/isahp.y2001.030 Search in Google Scholar

[29] A Zero Waste hierarchy for Europe [Online]. [Accessed 12.04.2022]. Available: https://zerowasteeurope.eu/2019/05/a-zero-waste-hierarchy-for-europe/ Stegmann P., Londo M., Junginger M. The circular bioeconomy: Its elements and role in European bioeconomy cluster. Resources, Conservation & Recycling 2020:6:100029. https://doi.org/10.1016/j.rcrx.2019.100029 Search in Google Scholar

[30] ETC/WMGE Report 1/2021: Plastic in textiles: potentials for circularity and reduced environmental and climate impacts [Online]. [Accessed 11.02.2022]. Available: https://www.eionet.europa.eu/etcs/etc-wmge/products/etcwmge-reports/plastic-in-textiles-potentials-for-circularity-and-reduced-environmental-and-climate-impacts Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other