Jelić A. et al. Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC). Polymers 2022:14(6):1255. https://doi.org/10.3390/polym14061255Search in Google Scholar
Atmakuri A., Palevicius A., Kolli L., Vilkauskas A., Janusas G., Puglia D. Development and Analysis of Mechanical Properties of Caryota and Sisal Natural Fibers Reinforced Epoxy Hybrid Composites. Polymers 2021:13(6):864. https://doi.org/10.3390/polym13060864Search in Google Scholar
Korolev A., Mishnev M., Zherebtsov D., Vatin N. I., Karelina M., Arjmand M. Polymers under Load and Heating Deformability: Modelling and Predicting. Polymers 2021:13(3):428. https://doi.org/10.3390/polym13030428Search in Google Scholar
Zhang W., et al. Core-Shell Graphitic Carbon Nitride/Zinc Phytate as a Novel Efficient Flame Retardant for Fire Safety and Smoke Suppression in Epoxy Resin. Polymers 2020:12(1):212. https://doi.org/10.3390/polym12010212Search in Google Scholar
Rodríguez-Uicab O., Abot J. L., Avilés F. Electrical Resistance Sensing of Epoxy Curing Using an Embedded Carbon Nanotube Yarn. Sensors 2020:20(11):3230. https://doi.org/10.3390/s20113230Search in Google Scholar
Formela K., et al. Sound Insulation Properties of Hollow Polystyrene Spheres/Polyethylene Glycol/Epoxy Composites. Polymers 2022:14(7):1388. https://doi.org/10.3390/polym14071388Search in Google Scholar
Sukanto H., Raharjo W. W., Ariawan D., Triyono J., Kaavesina M. Epoxy resins thermosetting for mechanical engineering. Open Eng. 2021:11(1):797–814. https://doi.org/10.1515/eng-2021-0078Search in Google Scholar
Van Fan Y., Lee C. T., Lim J. S., Klemeš J. J., Le P. T. K. Cross-disciplinary approaches towards smart, resilient and sustainable circular economy. J. Clean. Prod. 2019:232:1482–1491. https://doi.org/10.1016/j.jclepro.2019.05.266Search in Google Scholar
Liu S., Chevali V. S., Xu Z., Hui D., Wang H. A review of extending performance of epoxy resins using carbon nanomaterials. Compos. Part B Eng. 2018:136:197–214. https://doi.org/10.1016/j.compositesb.2017.08.020Search in Google Scholar
Di Mauro C., Malburet S., Genua A., Graillot A., Mija A. Sustainable Series of New Epoxidized Vegetable Oil-Based Thermosets with Chemical Recycling Properties. Biomacromolecules 2020:21(9):3923–3935. https://doi.org/10.1021/acs.biomac.0c01059Search in Google Scholar
Zhao X. L., Liu Y. Y., Weng Y., Li Y. D., Zeng J. B. Sustainable Epoxy Vitrimers from Epoxidized Soybean Oil and Vanillin. ACS Sustain. Chem. Eng. 2020:8(39):15020–15029. https://doi.org/10.1021/acssuschemeng.0c05727Search in Google Scholar
Auvergne R., Caillol S., David G., Boutevin B., Pascault J. P. Biobased thermosetting epoxy: Present and future. Chem. Rev. 2014:114(2):1082–1115. https://doi.org/10.1021/cr3001274Search in Google Scholar
Ding C., Matharu A. S. Recent developments on biobased curing agents: A review of their preparation and use. ACS Sustain. Chem. Eng. 2014:2(10):2217–2236. https://doi.org/10.1021/sc500478fSearch in Google Scholar
Shanmugam V., et al. Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends. Compos. Part C Open Access 2021:5:100138. https://doi.org/10.1016/j.jcomc.2021.100138Search in Google Scholar
Spalvins K., Blumberga D. Single cell oil production from waste biomass: Review of applicable agricultural byproducts. Agron. Res. 2019:17(3):833–849. https://doi.org/10.15159/ar.19.039Search in Google Scholar
Jin F. L., Li X., Park S. J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015:29:1–11. https://doi.org/10.1016/j.jiec.2015.03.026Search in Google Scholar
Negrell C., Cornille A., Andrade Nascimento de P., Robin J. J., Caillol S. New bio-based epoxy materials and foams from microalgal oil. Eur. J. Lipid Sci. Technol. 2017:119(4):1600214. https://doi.org/10.1002/ejlt.201600214Search in Google Scholar
Uglea C. V., Negulescu I. I. Synthesis and characterization of oligomers. CRC Press, 1991.Search in Google Scholar
Fiege H., et al. Phenol Derivatives. Ullmann’s Encycl. Ind. Chem. 2000. https://doi.org/10.1002/14356007.a19_313Search in Google Scholar
MacKay H., Abizaid A. A plurality of molecular targets: The receptor ecosystem for bisphenol-A (BPA). Horm. Behav. 2018:101:59–67. https://doi.org/10.1016/j.yhbeh.2017.11.001Search in Google Scholar
O’Connor J. C., Chapin R. E. Critical evaluation of observed adverse effects of endocrine active substances on reproduction and development, the immune system, and the nervous system. Pure Appl. Chem. 2003:75(11–12):2099–2123. https://doi.org/10.1351/pac200375112099Search in Google Scholar
Okada H., Tokunaga T., Liu X., Takayanagi S., Matsushima A., Shimohigashi Y. Direct evidence revealing structural elements essential for the high binding ability of bisphenol a to human estrogen-related receptor-γ. Environ. Health Perspect. 2008:116(1):32–38. https://doi.org/10.1289/ehp.10587Search in Google Scholar
vom Saal F. S., Hughes C. An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ. Health Perspect. 2005:113(8):926–933. https://doi.org/10.1289/ehp.7713Search in Google Scholar
Ertl J. Fully bio-based epoxy resins. Alma Mater Studiorum Università di Bologna, 2015.Search in Google Scholar
DOW Epichlorohydrin Product Stewardship Manual Safe Handling and Storage English. Epoxy. Chemical Compounds. DC, 2007.Search in Google Scholar
CDC – NIOSH Pocket Guide to Chemical Hazards-Epichlorohydrin. [Online]. [Accessed: 15.07.2022]. Available: https://www.cdc.gov/niosh/npg/npgd0254.htmlSearch in Google Scholar
Ayushi Choudhary E. P. Allied Market Research, Epoxy Resin Market forecast 2020–2027. AMR, 2020.Search in Google Scholar
Frankowski R., Zgoła-Grześkowiak A., Grześkowiak T., Sójka K. The presence of bisphenol A in the thermal paper in the face of changing European regulations – A comparative global research. Environ. Pollut. 2020:265:114879. https://doi.org/10.1016/j.envpol.2020.114879Search in Google Scholar
Meier M. A. R., Metzger J. O., Schubert U. S. Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev. 2007:36(11):1788–1802. https://doi.org/10.1039/b703294cSearch in Google Scholar
Kim J. R., Sharma S. The development and comparison of bio-thermoset plastics from epoxidized plant oils. Ind. Crops Prod. 2012:36(1):485–499. https://doi.org/10.1016/j.indcrop.2011.10.036Search in Google Scholar
Pawar M., Kadam A., Yemul O., Thamke V., Kodam K. Biodegradable bioepoxy resins based on epoxidized natural oil (cottonseed & algae) cured with citric and tartaric acids through solution polymerization: A renewable approach. Ind. Crops Prod. 2016:89:434–447. https://doi.org/10.1016/j.indcrop.2016.05.025Search in Google Scholar
Allasia M., et al. New insights into the properties of alkali-degradable thermosets based on epoxidized soy oil and plant-derived dicarboxylic acids. Polymer (Guildf). 2021:232:124143. https://doi.org/10.1016/j.polymer.2021.124143Search in Google Scholar
Petrović Z. S., Hong J., Lovrić Vuković M., Djonlagić J. Epoxy resins and composites from epoxidized linseed oil copolymers with cyclohexene oxide. Biocatal. Agric. Biotechnol. 2022:39:102269. https://doi.org/10.1016/j.bcab.2021.102269Search in Google Scholar
Todorovic A., Blößl Y., Oreski G., Resch-Fauster K. High-performance composite with 100% bio-based carbon content produced from epoxidized linseed oil, citric acid and flax fiber reinforcement. Compos. Part A Appl. Sci. Manuf. 2022:152:106666. https://doi.org/10.1016/j.compositesa.2021.106666Search in Google Scholar
Chen Y., Xi Z., Zhao L. New bio-based polymeric thermosets synthesized by ring-opening polymerization of epoxidized soybean oil with a green curing agent. Eur. Polym. J. 2016:84:435–447. https://doi.org/10.1016/j.eurpolymj.2016.08.038Search in Google Scholar
Huang X., Yang X., Liu H., Shang S., Cai Z., Wu K. Bio-based thermosetting epoxy foams from epoxidized soybean oil and rosin with enhanced properties. Ind. Crops Prod. 2019:139:111540. https://doi.org/10.1016/j.indcrop.2019.111540Search in Google Scholar
Gobin M., Loulergue P., Audic J. L., Lemiègre L. Synthesis and characterisation of bio-based polyester materials from vegetable oil and short to long chain dicarboxylic acids. Ind. Crops Prod. 2015:70:213–220. https://doi.org/10.1016/j.indcrop.2015.03.041Search in Google Scholar
Uprety B. K., Reddy J. V., Dalli S. S., Rakshit S. K. Utilization of microbial oil obtained from crude glycerol for the production of polyol and its subsequent conversion to polyurethane foams. Bioresour. Technol. 2017:235:309–315. https://doi.org/10.1016/j.biortech.2017.03.126Search in Google Scholar
Pawar M. S., Kadam A. S., Dawane B. S., Yemul O. S. Synthesis and characterization of rigid polyurethane foams from algae oil using biobased chain extenders. Polym. Bull. 2015:73(3):727–741. https://doi.org/10.1007/s00289-015-1514-1Search in Google Scholar
Petrović Z. S., et al. Polyols and Polyurethanes from Crude Algal Oil. J. Am. Oil Chem. Soc. 2013:90(7):1073–1078. https://doi.org/10.1007/s11746-013-2245-9Search in Google Scholar
Arbenz A., Perrin R., Avérous L. Elaboration and Properties of Innovative Biobased PUIR Foams from Microalgae. J. Polym. Environ. 2017:26(1):254–262. https://doi.org/10.1007/s10924-017-0948-ySearch in Google Scholar
Radojčić D., Hong J., Ionescu M., Wan X., Javni I., Petrović Z. S. Study on the reaction of amines with internal epoxides. Eur. J. Lipid Sci. Technol. 2016:118(10):1507–1511. https://doi.org/10.1002/ejlt.201500490Search in Google Scholar
Roy Chong J. W., et al. Microalgae-based bioplastics: Future solution towards mitigation of plastic wastes. Environ. Res. 2022:206:112620. https://doi.org/10.1016/j.envres.2021.112620Search in Google Scholar
Qi Y., et al. Facile synthesis of bio-based tetra-functional epoxy resin and its potential application as high-performance composite resin matrix. Compos. Part B Eng. 2021:214:108749. https://doi.org/10.1016/j.compositesb.2021.108749Search in Google Scholar
Hidalgo P., Álvarez S., Hunter R., Sánchez A. Epoxidation of Fatty Acid Methyl Esters Derived from Algae Biomass to Develop Sustainable Bio-Based Epoxy Resins. Polymers 2020:12(10):2313. https://doi.org/10.3390/polym12102313Search in Google Scholar
Ortiz P., Vendamme R., Eevers W. Fully Biobased Epoxy Resins from Fatty Acids and Lignin. Molecules 2020:25(5):1158. https://doi.org/10.3390/molecules25051158Search in Google Scholar
Bunekar N., Tsai T. Y. Chapter 4-Bio-based nanomaterials for properties and applications. Bio-Based Nanomater. Synth. Protoc. Mech. Appl. 2022:67–72. https://doi.org/10.1016/B978-0-323-85148-0.00001-4Search in Google Scholar
Hottle T. A., Bilec M. M., Landis A. E. Sustainability assessments of bio-based polymers. Polym. Degrad. Stab. 2013:98(9):1898–1907. https://doi.org/10.1016/j.polymdegradstab.2013.06.016Search in Google Scholar
Sala S., Reale F., Cristóbal-García J., Marelli L., Rana P. Life cycle assessment for the impact assessment of policies. Life thinking and assessment in the European policies and for evaluating policy options. Jt. Res. Cent. 2016:28380:53. https://doi.org/10.2788/318544Search in Google Scholar
Arias A., González-García S., González-Rodríguez S., Feijoo G., Moreira M. T. Cradle-to-gate Life Cycle Assessment of bio-adhesives for the wood panel industry. A comparison with petrochemical alternatives. Sci. Total Environ. 2020:738:140357. https://doi.org/10.1016/j.scitotenv.2020.140357Search in Google Scholar
Beckstrom B. D., Wilson M. H., Crocker M., Quinn J. C. Bioplastic feedstock production from microalgae with fuel co-products: A techno-economic and life cycle impact assessment. Algal Res. 2020:46:101769. https://doi.org/10.1016/j.algal.2019.101769Search in Google Scholar
Carroccio S. C., Scarfato P., Bruno E., Aprea P., Dintcheva N. T., Filippone G. Impact of nanoparticles on the environmental sustainability of polymer nanocomposites based on bioplastics or recycled plastics – A review of life-cycle assessment studies. J. Clean. Prod. 2022:335:130322. https://doi.org/10.1016/j.jclepro.2021.130322Search in Google Scholar
Venkata Subhash G., et al. Challenges in microalgal biofuel production: A perspective on techno economic feasibility under biorefinery stratagem. Bioresour. Technol. 2022:343:126155. https://doi.org/10.1016/j.biortech.2021.126155Search in Google Scholar
Chia S. R., Nomanbhay S. B. H. M., Chew K. W., Munawaroh H. S. H., Shamsuddin A. H., Show P. L. Algae as potential feedstock for various bioenergy production. Chemosphere 2022:287:131944. https://doi.org/10.1016/j.chemosphere.2021.131944Search in Google Scholar
Guenka Scarcelli P., et al. Integration of algae-based sewage treatment with anaerobic digestion of the bacterial-algal biomass and biogas upgrading. Bioresour. Technol. 2021:340:125552. https://doi.org/10.1016/j.biortech.2021.125552Search in Google Scholar
Kowthaman C. N., Arul Mozhi Selvan V., Senthil Kumar P. Optimization strategies of alkaline thermo-chemical pretreatment for the enhance ment of biogas production from de-oiled algae. Fuel 2021:303:121242. https://doi.org/10.1016/j.fuel.2021.121242Search in Google Scholar
Assacute L., Romagnoli F., Cappelli A., Ciocci C. Algae-based biorefinery concept: an LCI analysis for a theoretical plant. Energy Procedia 2018:147:15–24. https://doi.org/10.1016/j.egypro.2018.07.028Search in Google Scholar
Kowthaman C. N., Arul Mozhi Selvan V. Waste to green fuels: Kinetic study of low lipid waste algae for energy development. Bioresour. Technol. Reports 2020:11:100510. https://doi.org/10.1016/j.biteb.2020.100510Search in Google Scholar
Pastare L., Romagnoli F., Blumberga D. Comparison of biomethane potential lab tests for Latvian locally available algae. Energy Procedia 2018:147:277–281. https://doi.org/10.1016/j.egypro.2018.07.092Search in Google Scholar
Karimian A., Mahdavi M. A., Gheshlaghi R. Algal cultivation strategies for enhancing production of Chlorella sorokiniana IG-W-96 biomass and bioproducts. Algal Res. 2022:62:102630. https://doi.org/10.1016/j.algal.2022.102630Search in Google Scholar
Stemmelen M., Pessel F., Lapinte V., Caillol S., Habas J. P., Robin J. J. A fully biobased epoxy resin from vegetable oils: From the synthesis of the precursors by thiol-ene reaction to the study of the final material. J. Polym. Sci. Part A Polym. Chem. 2011:49(11):2434–2444. https://doi.org/10.1002/pola.24674Search in Google Scholar
Doǧan E., Küsefoǧlu S. Synthesis and in situ foaming of biodegradable malonic acid ESO polymers. J. Appl. Polym. Sci. 2008:110(2):1129–1135. https://doi.org/10.1002/app.28708Search in Google Scholar
La Scala J., Wool R. P. Fundamental thermo-mechanical property modeling of triglyceride-based thermosetting resins. J. Appl. Polym. Sci. 2013:127(3):1812–1826. https://doi.org/10.1002/app.37927Search in Google Scholar
Hultberg M., Jönsson H. L., Bergstrand K. J., Carlsson A. S. Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris. Bioresour. Technol. 2014:159:465–467. https://doi.org/10.1016/j.biortech.2014.03.092Search in Google Scholar
Tan X. B., et al. Semi-continuous cultivation of Chlorella vulgaris using chicken compost as nutrients source: Growth optimization study and fatty acid composition analysis. Energy Convers. Manag. 2018:164:363–373. https://doi.org/10.1016/j.enconman.2018.03.020Search in Google Scholar
Ren L. J., Li J., Hu Y. W., Ji X. J., Huang H. Utilization of cane molasses for docosahexaenoic acid production by Schizochytrium sp. CCTCC M209059. Korean J. Chem. Eng. 2013:30(4):787–789. https://doi.org/10.1007/s11814-013-0020-0Search in Google Scholar
Park W. K., et al. Economical DHA (Docosahexaenoic acid) production from Aurantiochytrium sp. KRS101 using orange peel extract and low cost nitrogen sources. Algal Res. 2018:29:71–79. https://doi.org/10.1016/j.algal.2017.11.017Search in Google Scholar
Ledesma-Amaro R., Nicaud J. M. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog. Lipid Res. 2016:61:40–50. https://doi.org/10.1016/j.plipres.2015.12.001Search in Google Scholar
Papanikolaou S., Chevalot I., Komaitis M., Aggelis G., Marc I. Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. Antonie van Leeuwenhoek 2001:80(3):215–224. https://doi.org/10.1023/A:1013083211405Search in Google Scholar
Fakas S., Makri A., Mavromati M., Tselepi M., Aggelis G. Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresour. Technol. 2009:100(23):6118–6120. https://doi.org/10.1016/j.biortech.2009.06.015Search in Google Scholar
Vamvakaki A. N., Kandarakis I., Kaminarides S., Komaitis M., Papanikolaou S. Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Eng. Life Sci. 2010:10(4):348–360. https://doi.org/10.1002/elsc.201000063Search in Google Scholar
Gouda M. K., Omar S. H., Aouad L. M. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J. Microbiol. Biotechnol. 2008:24(9):1703–1711. https://doi.org/10.1007/s11274-008-9664-zSearch in Google Scholar
Spalvins K., Vamza I., Blumberga D. Single Cell Oil Production from Waste Biomass: Review of Applicable Industrial By-Products. Environ. Clim. Technol. 2019:23(2):325–337. https://doi.org/10.2478/rtuect-2019-0071Search in Google Scholar
Spalvins K., Blumberga D. Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability. Environ. Clim. Technol. 2018:22(1):149–164. https://doi.org/10.2478/rtuect-2018-0010Search in Google Scholar
Roesle P., et al. Synthetic Polyester from Algae Oil. Angew. Chemie Int. Ed. 2014:53(26):6800–6804. https://doi.org/10.1002/anie.201403991Search in Google Scholar
Hidalgo P., Navia R., Hunter R., Gonzalez M. E., Echeverría A. Development of novel bio-based epoxides from microalgae Nannochloropsis gaditana lipids. Compos. Part B Eng. 2019:166:653–662. https://doi.org/10.1016/j.compositesb.2019.02.049Search in Google Scholar
Yang D., et al. Preparation and characterization of epoxidized microbial oil. Korean J. Chem. Eng. 2016:33(3):964–971. https://doi.org/10.1007/s11814-015-0216-6Search in Google Scholar