Cite

[1] WHO, UNICEF. Special Focus on Covid-19 Who/UNICEF Joint Monitoring Programme for Water Supply, Sanitation and Hygiene Progress on Drinking Water, Sanitation and Hygiene in Schools. New York: WHO, 2020. Search in Google Scholar

[2] Buor D. Water needs and women’s health in the Kumasi metropolitan area, Ghana. Health & Place 2004:10(1):85–103. https://doi.org/10.1016/S1353-8292(03)00050-910.1016/S1353-8292(03)00050-9 Search in Google Scholar

[3] EPA. Water Treatment Manual : Disinfection. County Wexford: EPA, 2013. Search in Google Scholar

[4] Motshekga S. C., et al. Preparation and antibacterial activity of chitosan-based nanocomposites containing bentonite-supported silver and zinc oxide nanoparticles for water disinfection. Applied Clay Science 2015:114:330–339. https://doi.org/10.1016/j.clay.2015.06.01010.1016/j.clay.2015.06.010 Search in Google Scholar

[5] Singh S., Garg A. 12 - Advanced oxidation processes for industrial effluent treatment. Shah MPBT-AOP for ETP. Elsevier, 2021:255–272.10.1016/B978-0-12-821011-6.00012-8 Search in Google Scholar

[6] Ravelli D., et al. Titanium dioxide photocatalysis: An assessment of the environmental compatibility for the case of the functionalization of heterocyclics. Applied Catalysis B: Environmental 2010:99(3–4):442–447. https://doi.org/10.1016/j.apcatb.2010.05.01010.1016/j.apcatb.2010.05.010 Search in Google Scholar

[7] Kuliesiene N., et al. TiO2Application for the Photocatalytical Inactivation of S. enterica, E. coli and M. luteus Bacteria Mixtures. Environmental and Climate Technologies 2020:24(3):418–429. https://doi.org/10.2478/rtuect-2020-011310.2478/rtuect-2020-0113 Search in Google Scholar

[8] Sakalauskaite S., et al. Potential and Risk of the Visible Light Assisted Photocatalytical Treatment of PRD1 and T4 Bacteriophage Mixtures. Environmental and Climate Technologies 2020:24(3):215–224. https://doi.org/10.2478/rtuect-2020-009810.2478/rtuect-2020-0098 Search in Google Scholar

[9] Varnagiris S., et al. Black carbon-doped TiO2 films: Synthesis, characterization and photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 2019:382:111941. https://doi.org/10.1016/J.JPHOTOCHEM.2019.11194110.1016/j.jphotochem.2019.111941 Search in Google Scholar

[10] ISO 10678:2010. Fine ceramics (advanced ceramics, advanced technical ceramics) — Determination of photocatalytic activity of surfaces in an aqueous medium by degradation of methylene blue. Search in Google Scholar

[11] Ohtani B., et al. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry 2010:216(2):179–182. https://doi.org/10.1016/j.jphotochem.2010.07.02410.1016/j.jphotochem.2010.07.024 Search in Google Scholar

[12] Sigma-Aldrich. P25 TiO2 Product Specification [Online]. [Accessed 5.02.2021]. Available: https://www.sigmaaldrich.com/specification-sheets/298/090/718467-BULK_______ALDRICH__.pdf Search in Google Scholar

[13] Foster H. A., et al. Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Applied Microbiology and Biotechnology 2011:90(6):1847–1868. https://doi.org/10.1007/s00253-011-3213-710.1007/s00253-011-3213-7707986721523480 Search in Google Scholar

[14] Bondarenko O. M., et al. Plasma membrane is the target of rapid antibacterial action of silver nanoparticles in Escherichia coli and Pseudomonas aeruginosa. International Journal of Nanomedicine 2018:13:6779–6790. https://doi.org/10.2147/IJN.S17716310.2147/IJN.S177163620727030498344 Search in Google Scholar

[15] Verdier T., et al. Antibacterial activity of TiO2 photocatalyst alone or in coatings on E. coli: The influence of methodological aspects. Coatings 2014:4(3):670–686. https://doi.org/10.3390/coatings403067010.3390/coatings4030670 Search in Google Scholar

[16] Castro-Alférez M., Polo-López M. I., Fernández-Ibáñez P. Intracellular mechanisms of solar water disinfection. Scientific Reports 2016:6:1–10. https://doi.org/10.1038/srep3814510.1038/srep38145513360327909341 Search in Google Scholar

[17] Zhao J., Riediker M. Detecting the oxidative reactivity of nanoparticles: A new protocol for reducing artifacts. Journal of Nanoparticle Research 2014:16(7):2493. https://doi.org/10.1007/s11051-014-2493-010.1007/s11051-014-2493-0409224025076842 Search in Google Scholar

[18] Daugelavicius R., Bakiene E., Bamford D. H. Stages of polymyxin B interaction with the Escherichia coli cell envelope. Antimicrobial Agents and Chemotherapy 2000:44(11):2969–2978. https://doi.org/10.1128/AAC.44.11.2969-2978.200010.1128/AAC.44.11.2969-2978.200010158811036008 Search in Google Scholar

[19] Kim M. J., Yuk H. G. Antibacterial Mechanism of 405-Nanometer Light-Emitting Diode Against Salmonella at Refrigeration Temperature. Applied and Environmental Microbiology 2017:83(5):1–14. https://doi.org/10.1128/AEM.02582-1610.1128/AEM.02582-16531141728003197 Search in Google Scholar

[20] Teelucksingh T., Thompson L. K., Cox G. The evolutionary conservation of escherichia coli drug efflux pumps supports physiological functions. Journal of Bacteriology 2020:202(22). https://doi.org/10.1128/JB.00367-2010.1128/JB.00367-20758505732839176 Search in Google Scholar

[21] Giannelli M., et al. Effects of photodynamic laser and violet-blue led irradiation on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide attached to moderately rough titanium surface: in vitro study. Lasers in Medical Science 2017:32(4):857–864. https://doi.org/10.1007/s10103-017-2185-y10.1007/s10103-017-2185-y28283813 Search in Google Scholar

[22] Lipovsky A., et al. Visible light-induced killing of bacteria as a function of wavelength: Implication for wound healing. Lasers in Surgery and Medicine 2010:42(6):467–472. https://doi.org/10.1002/lsm.2094810.1002/lsm.2094820662022 Search in Google Scholar

[23] Suyama Y., et al. Effects of light sources and visible light-activated titanium dioxide photocatalyst on bleaching. Dental Materials Journal 2009:28(6):693–699. https://doi.org/10.4012/dmj.28.69310.4012/dmj.28.69320019420 Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other