Open Access

Circular Economy and Bioeconomy Interaction Development as Future for Rural Regions. Case Study of Aizkraukle Region in Latvia

, ,  and   
Dec 13, 2019

Cite
Download Cover

[1] Sanz-Hernández A., Esteban E., Garrido P. Transition to a bioeconomy: Perspectives from social sciences. Journal of Cleaner Production 2019:224:107–119. doi:10.1016/j.jclepro.2019.03.16810.1016/j.jclepro.2019.03.168Open DOISearch in Google Scholar

[2] Zhao H. Will Resources Be Exhausted? – “Infinite” Supply of Finite Resources. The Economics and Politics of China’s Energy Security Transition 2019:1–27. doi:10.1016/b978-0-12-815152-5.00001-410.1016/b978-0-12-815152-5.00001-4Open DOISearch in Google Scholar

[3] Yildiz I. Fossil Fuels. Comprehensive Energy Systems 2018:1:521–567. doi:10.1016/B978-0-12-809597-3.00111-510.1016/B978-0-12-809597-3.00111-5Open DOISearch in Google Scholar

[4] Mullan B., Haqq-Mirsa J. Population growth, energy use, and the implications for the search for extraterrestrial intelligence. Futures 2019:106:4–17. doi:10.1016/j.futures.2018.06.00910.1016/j.futures.2018.06.009Open DOISearch in Google Scholar

[5] Lewandowski I., et al. Bioeconomy. Springer, 2018. doi:10.1007/978-3-319-68152-810.1007/978-3-319-68152-8Open DOISearch in Google Scholar

[6] Millar N., McLaughlin E., Borger T. The Circular Economy: Swings and Roundabouts? Ecological Economics 2019:158:11–19. doi:10.1016/j.ecolecon.2018.12.01210.1016/j.ecolecon.2018.12.012Open DOISearch in Google Scholar

[7] European Commission. The Bioeconomy Strategy, 2012.Search in Google Scholar

[8] Pülzl H., Kleinschmit D., Arts B. Bioeconomy – an emerging meta-discourse affecting forest discourses? Scandinavian Journal of Forest Research 2014:29(4):386–393. doi:10.1080/02827581.2014.92004410.1080/02827581.2014.920044Search in Google Scholar

[9] Global Bioeconomy Summit. Communiqué of the Global Bioeconomy Summit 2015 – Making Bioeconomy Work for Sustainable Development. Berlin, 2015.Search in Google Scholar

[10] Kirchherr J., Reike D., Hekkert M. Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling 2017:127:221–232. doi:10.1016/j.resconrec.2017.09.00510.1016/j.resconrec.2017.09.005Search in Google Scholar

[11] Carus M., Dammer L. Industry Report. The Circular Bioeconomy — Concepts, Opportunities, and Limitations. Industrial Biotechnology 2018:14(2):1–9. doi:10.1089/ind.2018.29121.mca10.1089/ind.2018.29121.mcaOpen DOISearch in Google Scholar

[12] Lindsey T. C. Sustainable principles: common values for achieving sustainability. Journal of Cleaner Production 2011:19(5):561–565. doi:10.1016/j.jclepro.2010.10.01410.1016/j.jclepro.2010.10.014Open DOISearch in Google Scholar

[13] Spatial Foresight, SWECO, ÖIR, t33, Nordregio, Berman Group, Infyde (2017): Bioeconomy development in EU regions. Mapping of EU Member States’/regions’ Research and Innovation plans & Strategies for Smart Specialisation (RIS3) on Bioeconomy for 2014–2020.Search in Google Scholar

[14] Valsts zemes dienests. Zemes sadalījums pa lietošanas veidiem, 2018 [Online]. [Accessed: 09.01.2019.]. Available: http://www.vzd.gov.lv/lv/parskati-un-statistika/statistika/statistika-no-kadastra/ZLV/Search in Google Scholar

[15] Valsts meža dienests. Meža statistika [Online]. [Accessed: 08.01.2019.]. Available: http://www.vmd.gov.lv/valstsmeza-dienests/statiskas-lapas/publikacijas-un-statistika/meza-statistikas-cd?nid=1809#jumpSearch in Google Scholar

[16] Lauksaimniecības datu centra publiskā datu bāze, 2018. gads [Online]. [Accessed: 08.01.2019.]. Available: http://pub.ldc.gov.lv/pub_stat.php?lang=lvSearch in Google Scholar

[17] Deklarēto kultūraugu platību apjoms pa novadiem un pagastiem par 2018.gadu [Online]. [Accessed: 08.01.2019.]. Available: http://lad.gov.lv/lv/statistika/platibu-maksajumi/periods-2004-2016/statistikas-dati-par-2018-gadu/Search in Google Scholar

[18] Nodarbinātības valsts aģentūra. Statistika par bezdarbu [Online]. [Accessed: 08.01.2019.]. Available: http://www.nva.gov.lv/index.php?cid=6#bezdarbsSearch in Google Scholar

[19] Lursoft statistika. Aktīvo uzņēmumu skaits pa nozarēm [Online]. [Accessed: 08.01.2019.]. Available: https://www.lursoft.lv/lursoft-statistika/Statistika-Latvijas-novadu-pilsetu-griezuma&id=515Search in Google Scholar

[20] Centrālās statistikas pārvalde. Iedzīvotāju skaits republikas pilsētās, novadu pilsētās un novados [Online]. [Accessed: 08.01.2019.]. Available: https://www.csb.gov.lv/lv/statistika/statistikas-temas/iedzivotaji/iedzivotajuskaits/galvenie-raditaji/iedzivotaju-skaits-republikas-pilsetasSearch in Google Scholar

[21] Teritorijas attīstības indekss, 2018 [Online]. [Accessed: 09.01.2019.]. Available: http://www.vraa.gov.lv/lv/publikacijas/attistibas_indekss/Search in Google Scholar

[22] Lauku atbalsta dienests. Lauksaimniecībā izmantojamās zemes apsekošana [Online]. [Accessed: 08.01.2019.]. Available: http://www.lad.gov.lv/lv/atbalsta-veidi/noderigi/lauksaimnieciba-izmantojamas-zemes-apsekosana-1/Search in Google Scholar

[23] Nature protection plan for nature reserve “Aizkraukles bog and forests”. Riga: Latvian Fund for Nature, 2011. (in Latvian)Search in Google Scholar

[24] Jaunjelgava Regional Council. Jaunjelgava region Development Program Database (Analysis of Existing Situation). Jaunjelgava: Jaunjelgava Regional Council, 2013. (in Latvian)Search in Google Scholar

[25] Grupa 93. Description of the current situation of Vecumnieki region. Vecumnieki: Grupa 93, 2013. (in Latvian)Search in Google Scholar

[26] Geo Consultants. Assessment of the composition of municipal, hazardous and industrial waste in waste management areas, management of certain types of waste and possibilities for waste disposal at landfills. Riga: Geo Consultants, 2017. (in Latvian)Search in Google Scholar

[27] Latvijas Vides, Ģeoloģijas un Meteoroloģijas Centrs. Summaries of the Single Environment Information System Database “3-Waste” [Online]. [Accessed: 14.01.2019.]. Available: http://parissrv.lvgmc.lv/#viewType=wasteReports&incrementCounter=1 (in Latvian)Search in Google Scholar

[28] Unkovich M., Baldock J., Forbes M. Variability in harvest index of grain crops and potential significance for carbon accounting: Examples from Australian agriculture. Advances in Agronomy 2010:105(1):173–219. doi:10.1016/S0065-2113(10)05005-410.1016/S0065-2113(10)05005-4Open DOISearch in Google Scholar

[29] Dai J., et al. Harvest index and straw yield of five classes of wheat. Biomass and Bioenergy 2016:85:223–227. doi:10.1016/j.biombioe.2015.12.02310.1016/j.biombioe.2015.12.023Open DOISearch in Google Scholar

[30] Brunori A., et al. The yield of five buckwheat (Fagopyrum esculentum Moench) varieties grown in Central and Southern Italy. Terra Nova 2005:102:98–102.Search in Google Scholar

[31] Morgan C., et al. Improving harvest index in oilseed rape (Brassica napus) through modifying canopy architectur. Agronomy 2007:3:26–30.Search in Google Scholar

[32] Lauksaimniecības kultūru sējumu platība, kopraža un vidējā ražība. Centrālā statistikas pārvalde, 2018 [Online]. [Accessed: 08.01.2019.]. Available: https://www.csb.gov.lv/lv/statistika/statistikastemas/lauksaimnieciba/augkopiba/tabulas/lag020/lauksaimniecibas-kulturu-sejumu-platiba-koprazaSearch in Google Scholar

[33] Rozentals G., et al. What the forest holder should know. Salaspils: Silava, 2017. (in Latvian)Search in Google Scholar

[34] Cameron A. D. Managing birch woodlands for the production of quality timber. Forestry: An International Journal of Forest Research 1996:69(4):357–371. doi:10.1093/forestry/69.4.35710.1093/forestry/69.4.357Open DOISearch in Google Scholar

[35] Arlinger J. Program for estimation of sawn timber, pulpwood and energy wood in felling areas. Uppsala: Skogforsk, Salaspils: Silava, 2005. (in Latvian)Search in Google Scholar

[36] Rusanova J., Markova D., Bazbauers G., Valters K. Waste-to-biomethane Concept Application: A Case Study of Valmiera City in Latvia. Environmental and Climate Technologies 2014:12:10–14.Search in Google Scholar

[37] Rasrendra C. B., et al. Recovery of acetic acid from an aqueous pyrolysis oil phase by reactive extraction using trin-octylamine. Chemical Engineering Journal 2011:176–177:244–252. doi:10.1016/j.cej.2011.08.08210.1016/j.cej.2011.08.082Open DOISearch in Google Scholar

[38] Polis O., Korica A., Daugavietis M. Biological active substances retained during the spruce tree foliage storage process. Mežzinātne 2009:19:52. (in Latvian)Search in Google Scholar

[39] Daberte I., Barene I., Rubens J., Daugavietis M. Producing and determination of qualitative indices of ordinary pine needles thick extract. European Journal of Pharmaceutical Sciences 2007:32(1)sup:32–33. doi:10.1016/j.ejps.2007.05.06910.1016/j.ejps.2007.05.069Open DOISearch in Google Scholar

[40] Zeng W.-C., Zhang Z., Jia L.-R. Antioxidant activity and characterization of antioxidant polysaccharides from pine needle (Cedrus deodara). Carbohydrate Polymers 2014:108:58–64. doi:10.1016/j.carbpol.2014.03.02210.1016/j.carbpol.2014.03.02224751247Open DOISearch in Google Scholar

[41] Wu J. P., et al. Cedrus deodara pine needle as a potential source of natural antioxidants: Bioactive constituents and antioxidant activities. Journal of Functional Foods 2015:14:605–612. doi:10.1016/j.jff.2015.02.02310.1016/j.jff.2015.02.023Open DOISearch in Google Scholar

[42] Hoai N. T., Duc H. V., Thao D. T., Orav A., Raal A. Selectivity of Pinus sylvestris extract and essential oil to estrogen-insensitive breast cancer cells Pinus sylvestris against cancer cells. Pharmacognosy Magazine 2015:11(44):290–295. doi:10.4103/0973-1296.16605210.4103/0973-1296.166052465333926664017Open DOISearch in Google Scholar

[43] Kelkar V. M., Geils B. W., Becker D. R., Overby S. T., Neary D. G. How to recover more value from small pine trees: Essential oils and resins. Biomass and Bioenergy 2006:30(4):316–320. doi:10.1016/j.biombioe.2005.07.00910.1016/j.biombioe.2005.07.009Open DOISearch in Google Scholar

[44] Tripathi A. K., Kumari M., Kumar A., Kumar S. Generation of Biogas Using Pine Needles as Substrate in Domestic Biogas Plant. International Journal of Renewable Energy Research 2015:5(3):716–721.Search in Google Scholar

[45] Xiao S., Gao R., Lu Y., Li J., Sun Q. Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydrate Polymers 2015:119:202–209. doi:10.1016/j.carbpol.2014.11.04110.1016/j.carbpol.2014.11.04125563961Open DOISearch in Google Scholar

[46] Assefi M., Davar F., Hadadzadeh H. Green synthesis of nanosilica by thermal decomposition of pine cones. Advanced Powder Technology 2015:26(6):1583–1589. doi:10.1016/j.apt.2015.09.00410.1016/j.apt.2015.09.004Open DOISearch in Google Scholar

[47] Sharma N., Mahajan S., Sharma N. Evaluation of different forest wastes of Northern Himalayas. Journal of Agroalimentary Processes and Technologies 2012:18(4):324–335.Search in Google Scholar

[48] Lal P. S., Sharma A., Bist V. Pine Needle - An Evaluation of Pulp and Paper Making Potential. Journal of forest products & industries 2013:2(3):42–47.Search in Google Scholar

[49] Muizniece I., Vilcane L., Blumberga D. Laboratory research of granular heat insulation material from coniferous forestry residue. Agronomy Research 2015:13(2):690–699.Search in Google Scholar

[50] Muizniece I., Blumberga D. Thermal conductivity of heat insulation material made from coniferous needles with potato starch binder. Energy Procedia 2016:95:324–329. doi:10.1016/j.egypro.2016.09.01410.1016/j.egypro.2016.09.014Open DOISearch in Google Scholar

[51] Muizniece I., Blumberga D., Ansone A. Use greenery from coniferous trees for manufacture of heat insulation material. Energy Procedia 2015:72:209–215. doi:10.1016/j.egypro.2015.06.03010.1016/j.egypro.2015.06.030Open DOISearch in Google Scholar

[52] Dong C., Parsons D., Davies J. I. Tensile strength of pine needles and their feasibility as reinforcement in composite materials. Journal of Materials Science 2014:49(23):8057–8062. doi:10.1007/s10853-014-8513-810.1007/s10853-014-8513-8Open DOISearch in Google Scholar

[53] Chauhan M., Gupta M., Sungh B., Singh A. K., Gupta V. K. Pine Needle/Isocyanate Composites: Dimensional Stability, Biological Resistance, Flammability, and Thermoacoustic Characteristics. Polymer Composites 2012:33(3):324–335. doi:10.1002/pc.2215110.1002/pc.22151Open DOISearch in Google Scholar

Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Life Sciences, other