Uneingeschränkter Zugang

Circular Economy and Bioeconomy Interaction Development as Future for Rural Regions. Case Study of Aizkraukle Region in Latvia

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
“Special Issue of Environmental and Climate Technologies Part II: Energy, bioeconomy, climate changes and environment nexus”

Zitieren

[1] Sanz-Hernández A., Esteban E., Garrido P. Transition to a bioeconomy: Perspectives from social sciences. Journal of Cleaner Production 2019:224:107–119. doi:10.1016/j.jclepro.2019.03.16810.1016/j.jclepro.2019.03.168Open DOISearch in Google Scholar

[2] Zhao H. Will Resources Be Exhausted? – “Infinite” Supply of Finite Resources. The Economics and Politics of China’s Energy Security Transition 2019:1–27. doi:10.1016/b978-0-12-815152-5.00001-410.1016/b978-0-12-815152-5.00001-4Open DOISearch in Google Scholar

[3] Yildiz I. Fossil Fuels. Comprehensive Energy Systems 2018:1:521–567. doi:10.1016/B978-0-12-809597-3.00111-510.1016/B978-0-12-809597-3.00111-5Open DOISearch in Google Scholar

[4] Mullan B., Haqq-Mirsa J. Population growth, energy use, and the implications for the search for extraterrestrial intelligence. Futures 2019:106:4–17. doi:10.1016/j.futures.2018.06.00910.1016/j.futures.2018.06.009Open DOISearch in Google Scholar

[5] Lewandowski I., et al. Bioeconomy. Springer, 2018. doi:10.1007/978-3-319-68152-810.1007/978-3-319-68152-8Open DOISearch in Google Scholar

[6] Millar N., McLaughlin E., Borger T. The Circular Economy: Swings and Roundabouts? Ecological Economics 2019:158:11–19. doi:10.1016/j.ecolecon.2018.12.01210.1016/j.ecolecon.2018.12.012Open DOISearch in Google Scholar

[7] European Commission. The Bioeconomy Strategy, 2012.Search in Google Scholar

[8] Pülzl H., Kleinschmit D., Arts B. Bioeconomy – an emerging meta-discourse affecting forest discourses? Scandinavian Journal of Forest Research 2014:29(4):386–393. doi:10.1080/02827581.2014.92004410.1080/02827581.2014.920044Search in Google Scholar

[9] Global Bioeconomy Summit. Communiqué of the Global Bioeconomy Summit 2015 – Making Bioeconomy Work for Sustainable Development. Berlin, 2015.Search in Google Scholar

[10] Kirchherr J., Reike D., Hekkert M. Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling 2017:127:221–232. doi:10.1016/j.resconrec.2017.09.00510.1016/j.resconrec.2017.09.005Search in Google Scholar

[11] Carus M., Dammer L. Industry Report. The Circular Bioeconomy — Concepts, Opportunities, and Limitations. Industrial Biotechnology 2018:14(2):1–9. doi:10.1089/ind.2018.29121.mca10.1089/ind.2018.29121.mcaOpen DOISearch in Google Scholar

[12] Lindsey T. C. Sustainable principles: common values for achieving sustainability. Journal of Cleaner Production 2011:19(5):561–565. doi:10.1016/j.jclepro.2010.10.01410.1016/j.jclepro.2010.10.014Open DOISearch in Google Scholar

[13] Spatial Foresight, SWECO, ÖIR, t33, Nordregio, Berman Group, Infyde (2017): Bioeconomy development in EU regions. Mapping of EU Member States’/regions’ Research and Innovation plans & Strategies for Smart Specialisation (RIS3) on Bioeconomy for 2014–2020.Search in Google Scholar

[14] Valsts zemes dienests. Zemes sadalījums pa lietošanas veidiem, 2018 [Online]. [Accessed: 09.01.2019.]. Available: http://www.vzd.gov.lv/lv/parskati-un-statistika/statistika/statistika-no-kadastra/ZLV/Search in Google Scholar

[15] Valsts meža dienests. Meža statistika [Online]. [Accessed: 08.01.2019.]. Available: http://www.vmd.gov.lv/valstsmeza-dienests/statiskas-lapas/publikacijas-un-statistika/meza-statistikas-cd?nid=1809#jumpSearch in Google Scholar

[16] Lauksaimniecības datu centra publiskā datu bāze, 2018. gads [Online]. [Accessed: 08.01.2019.]. Available: http://pub.ldc.gov.lv/pub_stat.php?lang=lvSearch in Google Scholar

[17] Deklarēto kultūraugu platību apjoms pa novadiem un pagastiem par 2018.gadu [Online]. [Accessed: 08.01.2019.]. Available: http://lad.gov.lv/lv/statistika/platibu-maksajumi/periods-2004-2016/statistikas-dati-par-2018-gadu/Search in Google Scholar

[18] Nodarbinātības valsts aģentūra. Statistika par bezdarbu [Online]. [Accessed: 08.01.2019.]. Available: http://www.nva.gov.lv/index.php?cid=6#bezdarbsSearch in Google Scholar

[19] Lursoft statistika. Aktīvo uzņēmumu skaits pa nozarēm [Online]. [Accessed: 08.01.2019.]. Available: https://www.lursoft.lv/lursoft-statistika/Statistika-Latvijas-novadu-pilsetu-griezuma&id=515Search in Google Scholar

[20] Centrālās statistikas pārvalde. Iedzīvotāju skaits republikas pilsētās, novadu pilsētās un novados [Online]. [Accessed: 08.01.2019.]. Available: https://www.csb.gov.lv/lv/statistika/statistikas-temas/iedzivotaji/iedzivotajuskaits/galvenie-raditaji/iedzivotaju-skaits-republikas-pilsetasSearch in Google Scholar

[21] Teritorijas attīstības indekss, 2018 [Online]. [Accessed: 09.01.2019.]. Available: http://www.vraa.gov.lv/lv/publikacijas/attistibas_indekss/Search in Google Scholar

[22] Lauku atbalsta dienests. Lauksaimniecībā izmantojamās zemes apsekošana [Online]. [Accessed: 08.01.2019.]. Available: http://www.lad.gov.lv/lv/atbalsta-veidi/noderigi/lauksaimnieciba-izmantojamas-zemes-apsekosana-1/Search in Google Scholar

[23] Nature protection plan for nature reserve “Aizkraukles bog and forests”. Riga: Latvian Fund for Nature, 2011. (in Latvian)Search in Google Scholar

[24] Jaunjelgava Regional Council. Jaunjelgava region Development Program Database (Analysis of Existing Situation). Jaunjelgava: Jaunjelgava Regional Council, 2013. (in Latvian)Search in Google Scholar

[25] Grupa 93. Description of the current situation of Vecumnieki region. Vecumnieki: Grupa 93, 2013. (in Latvian)Search in Google Scholar

[26] Geo Consultants. Assessment of the composition of municipal, hazardous and industrial waste in waste management areas, management of certain types of waste and possibilities for waste disposal at landfills. Riga: Geo Consultants, 2017. (in Latvian)Search in Google Scholar

[27] Latvijas Vides, Ģeoloģijas un Meteoroloģijas Centrs. Summaries of the Single Environment Information System Database “3-Waste” [Online]. [Accessed: 14.01.2019.]. Available: http://parissrv.lvgmc.lv/#viewType=wasteReports&incrementCounter=1 (in Latvian)Search in Google Scholar

[28] Unkovich M., Baldock J., Forbes M. Variability in harvest index of grain crops and potential significance for carbon accounting: Examples from Australian agriculture. Advances in Agronomy 2010:105(1):173–219. doi:10.1016/S0065-2113(10)05005-410.1016/S0065-2113(10)05005-4Open DOISearch in Google Scholar

[29] Dai J., et al. Harvest index and straw yield of five classes of wheat. Biomass and Bioenergy 2016:85:223–227. doi:10.1016/j.biombioe.2015.12.02310.1016/j.biombioe.2015.12.023Open DOISearch in Google Scholar

[30] Brunori A., et al. The yield of five buckwheat (Fagopyrum esculentum Moench) varieties grown in Central and Southern Italy. Terra Nova 2005:102:98–102.Search in Google Scholar

[31] Morgan C., et al. Improving harvest index in oilseed rape (Brassica napus) through modifying canopy architectur. Agronomy 2007:3:26–30.Search in Google Scholar

[32] Lauksaimniecības kultūru sējumu platība, kopraža un vidējā ražība. Centrālā statistikas pārvalde, 2018 [Online]. [Accessed: 08.01.2019.]. Available: https://www.csb.gov.lv/lv/statistika/statistikastemas/lauksaimnieciba/augkopiba/tabulas/lag020/lauksaimniecibas-kulturu-sejumu-platiba-koprazaSearch in Google Scholar

[33] Rozentals G., et al. What the forest holder should know. Salaspils: Silava, 2017. (in Latvian)Search in Google Scholar

[34] Cameron A. D. Managing birch woodlands for the production of quality timber. Forestry: An International Journal of Forest Research 1996:69(4):357–371. doi:10.1093/forestry/69.4.35710.1093/forestry/69.4.357Open DOISearch in Google Scholar

[35] Arlinger J. Program for estimation of sawn timber, pulpwood and energy wood in felling areas. Uppsala: Skogforsk, Salaspils: Silava, 2005. (in Latvian)Search in Google Scholar

[36] Rusanova J., Markova D., Bazbauers G., Valters K. Waste-to-biomethane Concept Application: A Case Study of Valmiera City in Latvia. Environmental and Climate Technologies 2014:12:10–14.Search in Google Scholar

[37] Rasrendra C. B., et al. Recovery of acetic acid from an aqueous pyrolysis oil phase by reactive extraction using trin-octylamine. Chemical Engineering Journal 2011:176–177:244–252. doi:10.1016/j.cej.2011.08.08210.1016/j.cej.2011.08.082Open DOISearch in Google Scholar

[38] Polis O., Korica A., Daugavietis M. Biological active substances retained during the spruce tree foliage storage process. Mežzinātne 2009:19:52. (in Latvian)Search in Google Scholar

[39] Daberte I., Barene I., Rubens J., Daugavietis M. Producing and determination of qualitative indices of ordinary pine needles thick extract. European Journal of Pharmaceutical Sciences 2007:32(1)sup:32–33. doi:10.1016/j.ejps.2007.05.06910.1016/j.ejps.2007.05.069Open DOISearch in Google Scholar

[40] Zeng W.-C., Zhang Z., Jia L.-R. Antioxidant activity and characterization of antioxidant polysaccharides from pine needle (Cedrus deodara). Carbohydrate Polymers 2014:108:58–64. doi:10.1016/j.carbpol.2014.03.02210.1016/j.carbpol.2014.03.02224751247Open DOISearch in Google Scholar

[41] Wu J. P., et al. Cedrus deodara pine needle as a potential source of natural antioxidants: Bioactive constituents and antioxidant activities. Journal of Functional Foods 2015:14:605–612. doi:10.1016/j.jff.2015.02.02310.1016/j.jff.2015.02.023Open DOISearch in Google Scholar

[42] Hoai N. T., Duc H. V., Thao D. T., Orav A., Raal A. Selectivity of Pinus sylvestris extract and essential oil to estrogen-insensitive breast cancer cells Pinus sylvestris against cancer cells. Pharmacognosy Magazine 2015:11(44):290–295. doi:10.4103/0973-1296.16605210.4103/0973-1296.166052465333926664017Open DOISearch in Google Scholar

[43] Kelkar V. M., Geils B. W., Becker D. R., Overby S. T., Neary D. G. How to recover more value from small pine trees: Essential oils and resins. Biomass and Bioenergy 2006:30(4):316–320. doi:10.1016/j.biombioe.2005.07.00910.1016/j.biombioe.2005.07.009Open DOISearch in Google Scholar

[44] Tripathi A. K., Kumari M., Kumar A., Kumar S. Generation of Biogas Using Pine Needles as Substrate in Domestic Biogas Plant. International Journal of Renewable Energy Research 2015:5(3):716–721.Search in Google Scholar

[45] Xiao S., Gao R., Lu Y., Li J., Sun Q. Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydrate Polymers 2015:119:202–209. doi:10.1016/j.carbpol.2014.11.04110.1016/j.carbpol.2014.11.04125563961Open DOISearch in Google Scholar

[46] Assefi M., Davar F., Hadadzadeh H. Green synthesis of nanosilica by thermal decomposition of pine cones. Advanced Powder Technology 2015:26(6):1583–1589. doi:10.1016/j.apt.2015.09.00410.1016/j.apt.2015.09.004Open DOISearch in Google Scholar

[47] Sharma N., Mahajan S., Sharma N. Evaluation of different forest wastes of Northern Himalayas. Journal of Agroalimentary Processes and Technologies 2012:18(4):324–335.Search in Google Scholar

[48] Lal P. S., Sharma A., Bist V. Pine Needle - An Evaluation of Pulp and Paper Making Potential. Journal of forest products & industries 2013:2(3):42–47.Search in Google Scholar

[49] Muizniece I., Vilcane L., Blumberga D. Laboratory research of granular heat insulation material from coniferous forestry residue. Agronomy Research 2015:13(2):690–699.Search in Google Scholar

[50] Muizniece I., Blumberga D. Thermal conductivity of heat insulation material made from coniferous needles with potato starch binder. Energy Procedia 2016:95:324–329. doi:10.1016/j.egypro.2016.09.01410.1016/j.egypro.2016.09.014Open DOISearch in Google Scholar

[51] Muizniece I., Blumberga D., Ansone A. Use greenery from coniferous trees for manufacture of heat insulation material. Energy Procedia 2015:72:209–215. doi:10.1016/j.egypro.2015.06.03010.1016/j.egypro.2015.06.030Open DOISearch in Google Scholar

[52] Dong C., Parsons D., Davies J. I. Tensile strength of pine needles and their feasibility as reinforcement in composite materials. Journal of Materials Science 2014:49(23):8057–8062. doi:10.1007/s10853-014-8513-810.1007/s10853-014-8513-8Open DOISearch in Google Scholar

[53] Chauhan M., Gupta M., Sungh B., Singh A. K., Gupta V. K. Pine Needle/Isocyanate Composites: Dimensional Stability, Biological Resistance, Flammability, and Thermoacoustic Characteristics. Polymer Composites 2012:33(3):324–335. doi:10.1002/pc.2215110.1002/pc.22151Open DOISearch in Google Scholar

eISSN:
2255-8837
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, andere