1. bookVolume 29 (2021): Issue 2 (April 2021)
Journal Details
License
Format
Journal
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Prognostic value of serum lactate dehydrogenase in hospitalized patients with Covid-19

Published Online: 27 Apr 2021
Page range: 131 - 141
Received: 31 Dec 2020
Accepted: 20 Mar 2021
Journal Details
License
Format
Journal
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Background: Biochemical markers in COVID-19 remain to be defined. We analyzed the usefulness of LDH and ferritin in predicting outcome.

Methods: This retrospective study analyzed ferritin and LDH concentrations obtained during the first 11 days of hospitalization in COVID-19 patients. We compared the change in ferritin and LDH concentrations obtained on each day of hospital admission with respect to baseline values between patients with favorable and unfavorable outcomes. We used receiver operating curve analysis to determine cutoffs for predicting outcomes.

Results: We analyzed 387 patients. For determinations done on the 9th day, increases in LDH concentrations > 14.6% over the baseline yielded 80% positive predictive value, and a lack of increase yielded 96% negative predictive value for unfavorable outcomes. The change in ferritin concentration yielded lower predictive values.

Conclusion: The percentage of change in LDH with respect to the baseline on the 9th day of hospitalization can predict outcome..

Keywords

1. World Health Organization, Coronavirus disease (COVID-19) pandemic. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed June 1, 2020.Search in Google Scholar

2. Cao W, Li T. COVID-19: towards understanding of pathogenesis. Cell Res. 2020; 30:367-69. DOI: 10.1038/s41422-020-0327-4Search in Google Scholar

3. Bonetti G, Manelli F, Patroni A, Bettinardi A, Borrelli G, Fiordalisi G, et al. Laboratory predictors of death from coronavirus disease 2019 (COVID-19) in the area of Valcamonica, Italy. Clin Chem Lab Med. 2020; 58(7):1100-05. DOI: 10.1515/cclm-2020-0459Search in Google Scholar

4. Wang K, Zuo P, Liu Y, Zhang M, Zhao X, Xie S, et al. Clinical and laboratory predictors of in-hospital mortality in patients with COVID-19: a cohort study in Wuhan, China. Clin Infect Dis. 2020;19;71(16):2079-88. DOI: 10.1093/cid/ciaa538Search in Google Scholar

5. Tian W, Jiang W, Yao Y, Nicholson CJ, Li RH, Sigurslide HH, et al. Predictors of mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis. J Med Virol. 2020;92(10):1875-83. DOI: 10.1002/jmv.26050Search in Google Scholar

6. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62. DOI: 10.1016/S0140-6736(20)30566-3Search in Google Scholar

7. Li Y, Hu Y, Yu J, Ma T. Retrospective analysis of laboratory testing in 54 patients with severe- or critical-type 2019 novel coronavirus pneumonia. Lab Invest. 2020;100(6):794-800. DOI: 10.1038/s41374-020-0431-6Search in Google Scholar

8. Henry BM, De Olivera MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune bio-marker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020;58(7):1021-28. DOI: 10.1515/cclm-2020-0369Search in Google Scholar

9. Cecconi M, Piovani D, Brunetta E, Aghemo A, Greco M, Cicarelli M, et al. Early Predictors of Clinical Deterioration in a Cohort of 239 Patients Hospitalized for Covid-19 Infection in Lombardy, Italy. J Clin Med. 2020;9(5):e1548. DOI: 10.3390/jcm9051548Search in Google Scholar

10. Health Ministry of Spain, Covid-19 situation in Spain. Available from: https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov-China/situacionActual.htm. Accessed July 14, 2020.Search in Google Scholar

11. Metropolitan Area of Barcelona, Metropolitan Barcelona information on COVID-19. Available from: http://www.amb.cat/es/web/area-metropolitana/covid19. Accessed July 14, 2020.Search in Google Scholar

12. Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clin Chem Lab Med. 2020;58(7):1131-34. DOI: 10.1515/cclm-2020-0198Search in Google Scholar

13. Sun Y, Dong Y, Wang L, Xie H, Li B, Chang C, et al. Characteristics and prognostic factors of disease severity in patients with COVID-19: The Beijing experience. J Autoimmun. 2020. DOI: 10.1016/j.jaut.2020.102473Search in Google Scholar

14. Julián-Jimenez A, González del Castillo J, Candel F. Usefulness and prognostic value of biomarkers in patients with community-acquired pneumonia in the emergency department. Med Clin (Barc). 2017;148(11):501-10. DOI: 10.1016/j.medcle.2017.04.033Search in Google Scholar

15. Li X, Wang L, Yan S, Xiang L, Zhu J, Shen B, et al. Clinical characteristics of 25 death cases with COVID-19: A retrospective review of medical records in a single medical center, Wuhan, China. Int J Infect Dis. 2020;94:128-32. DOI: 10.1016/j.ijid.2020.03.053Search in Google Scholar

16. Liu J, Liu S. The management of coronavirus disease 2019 (COVID-19). J Med Virol. 2020; 92(10):2146-51. DOI: 10.1002/jmv.25965Search in Google Scholar

17. Luo W, Lin Y, Yao X, Shi Y, Lu F, Wang Z, et al. Clinical findings of 35 cases with novel coronavirus pneumonia outside of Wuhan. Pulmonology. 2020. DOI: 10.21203/rs.3.rs-22554/v1Search in Google Scholar

18. Guan WJ, Ni ZY, Hu Y. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. DOI: 10.1056/NEJMoa2002032Search in Google Scholar

19. Liu T, Zhang J, Yang Y, Ma H, Li Z, Zhang J. The potential role of IL-6 in monitoring severe case of coronavirus disease 2019. EMBO Mol Med. 2020;12(7):e12421. DOI: 10.15252/emmm.202012421Search in Google Scholar

20. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-69. DOI: 10.1001/jama.2020.1585Search in Google Scholar

21. Lian J, Jin X, Hao S, Cai H, Zhang S, Zheng L, et al. Clinical characteristics of 25 death cases with COVID-19: A retrospective review of medical records in a single medical center, Wuhan, China. Clin Infect Dis. 2020;94:128-32. DOI: 10.1016/j.ijid.2020.03.053Search in Google Scholar

22. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506. DOI: 10.1016/S0140-6736(20)30183-5Search in Google Scholar

23. Weiss P. Clinical course and mortality risk of severe COVID-19. Lancet. 2020;395(10229):1014-15. DOI: 10.1016/S0140-6736(20)30633-4Search in Google Scholar

24. Richardson S, Hirsch JS, Narasimhan M, Crawford J, McGinn T, Davidson KW, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized with COVID-19 in the New York City Area. JAMA. 2020;323(20):2052-59. DOI: 10.1001/jama.2020.6775Search in Google Scholar

25. Mo P, Xing Y, Xiao Y, Deng L, Zhao Q, Wang H, et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin Infect Dis. 2020. DOI: 10.1093/cid/ciaa270Search in Google Scholar

26. Liang W, Liang H, Ou L, Chen B, Chen A, Li C, et al. Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients With COVID-19. JAMA. Intern Med 2020;1;180(8):1081-89. DOI: 10.1001/jamainternmed.2020.2033Search in Google Scholar

27. Ji D, Zhang D, Xu J, Chen Z, Yang T, Zhao P, et al. Prediction for Progression Risk in Patients with COVID-19 Pneumonia: The CALL Score. Clin Infect Dis. 2020;12;71(6):1393-99. DOI: 10.1093/cid/ciaa414Search in Google Scholar

28. Zhao Z, Chen A, Hou W, Graham JM, Li H, Rich-man PS, et al. Prediction model and risk scores of ICU admission and mortality in COVID-19. PLoS ONE. 2020;30;15(7):e0236618. DOI: 10.1371/journal. pone.0236618Search in Google Scholar

29. Jean SS, Lee PI, Hsueh PRJ, et al. Treatment options for COVID-19: The reality and challenges. Microbiol Immunol Infect. 2020;53(3):436-43. DOI: 10.1016/j. jmii.2020.03.034Search in Google Scholar

30. Grein J. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med. 2020;382(24):2327-36. DOI: 10.1056/NEJMoa2007016Search in Google Scholar

31. Liu YJ, Yang YL, Xu Y. What we learned from SARS may provide important insights into understanding and management of coronavirus disease 2019. Zhonghua Jie He He Hu Xi Za Zhi. 2020;339-44.Search in Google Scholar

32. Kerboua KE. NLR: A Cost-effective Nomo-gram to Guide Therapeutic Interventions in COVID-19. Immunol Invest. 2020;1:1-9. DOI: 10.1080/08820139.2020.1773850Search in Google Scholar

33. McGonagle D, Sharif K, O’Regan A. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19(6):102537. DOI: 10.1016/j.autrev.2020.102537Search in Google Scholar

34. Moore JB and June CH. Cytokine release syndrome in severe COVID-19. Science. 2020;368(6490):473-74. DOI: 10.1126/science.abb8925Search in Google Scholar

35. Qin C, Zhou L, Hu Z, Zhang S, Yang Y, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020;71(15):762-768. DOI: 10.1093/cid/ciaa248Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo