[
Bagui, S., Nandi, D., Bagui, S., & White, R.J. (2019). Classifying Phishing Email Using Machine Learning and Deep Learning. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). DOI: 10.1109/CyberSecPODS. 2019.8885143. Available at: https://monkey.org/~jose/phishing/.
]Search in Google Scholar
[
L’Huillier, G., Hevia, A., Weber, R., & Ríos, S. (2010). Latent semantic analysis and keyword extraction for phishing classification. 2010 IEEE International Conference on Intelligence and Security Informatics. DOI: 10.1109/ISI.2010.5484762.
]Search in Google Scholar
[
Molette, P. (2009). De l’APD à Tropes: comment un outil d’analyse de contenu peut évoluer en logiciel de classification sémantique généraliste. Communication au colloque Psychologie et communication Tarbes. Available at: https://www.tropes.fr/PierreMolette-CommunicationColloquePsychoTarbesJuin2009.pdf, accessed on August 7, 2024.
]Search in Google Scholar
[
Park, G., & Taylor, J.M. (2021). Towards Text-based Phishing Detection. arXiv.org. DOI:10.48550/arXiv.2111.01676.
]Search in Google Scholar
[
Salloum, S.A., Gaber, T., Vadera, S, & Shaalan, K. (2022). A Systematic Literature Review on Phishing Email Detection Using Natural Language Processing Techniques. IEEE Access, Vol. 10, 65703-65727. DOI: 10.1109/ACCESS.2022.3183083, Electronic ISSN: 2169-3536.
]Search in Google Scholar
[
Tropes. (n.d.). Available at: https://www.tropes.fr/.
]Search in Google Scholar
[
Zhang, X., Zeng, Y., Jin, X.-B., Yan, Z.-W., & Geng, G.-G. (2017). Boosting the phishing detection performance by semantic analysis. 2017 IEEE International Conference on Big Data (Big Data). DOI: 10.1109/BigData.2017.8258030.
]Search in Google Scholar