[
Albadr, M. A., Tiun, S., Ayob, M., & Al-Dhief, F. (2020). Genetic algorithm based on natural selection theory for optimization problems. Symmetry, 12(11), 1–31. https://doi.org/10.3390/sym12111758
]Search in Google Scholar
[
Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K., Alonso-Moral, J. M., Confalonieri, R., Guidotti, R., Del Ser, J., Díaz-Rodríguez, N., & Herrera, F. (2023). Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Information Fusion, 99, 101805. https://doi.org/10.1016/J.INFFUS.2023.101805
]Search in Google Scholar
[
Annis, D. H. (2006). Kendall’s Advanced Theory of Statistics, Vol. 1: Distribution Theory, Kendall’s Advanced Theory of Statistics, Vol. 2A: Classical Inference and the Linear Model. Journal of the American Statistical Association, 101(476), 1721–1721. https://doi.org/10.1198/jasa.2006.s140
]Search in Google Scholar
[
Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert Systems with Applications, 140, 112896. https://doi.org/10.1016/J.ESWA.2019.112896
]Search in Google Scholar
[
Bennett, D., Niv, Y., & Langdon, A. J. (2021). Value-free reinforcement learning: policy optimization as a minimal model of operant behavior. Current Opinion in Behavioral Sciences, 41, 114–121. https://doi.org/10.1016/J.COBEHA.2021.04.020
]Search in Google Scholar
[
Benti, N. E., Chaka, M. D., & Semie, A. G. (2023). Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects. Sustainability (Switzerland), 15(9). https://doi.org/10.3390/su15097087
]Search in Google Scholar
[
Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014
]Search in Google Scholar
[
Chockalingam, S., Pieters, W., Teixeira, A., Khakzad, N., & van Gelder, P. (2019). Combining Bayesian networks and fishbone diagrams to distinguish between intentional attacks and accidental technical failures. Graphical Models for Security, 11086 LNCS, 31–50. https://doi.org/10.1007/978-3-030-15465-3_3
]Search in Google Scholar
[
Dash, C. S. K., Behera, A. K., Dehuri, S., & Ghosh, A. (2023). An outliers detection and elimination framework in classification task of data mining. Decision Analytics Journal, 6, 100164. https://doi.org/10.1016/J.DAJOUR.2023.100164
]Search in Google Scholar
[
De Burgh-Day, C. O., & Leeuwenburg, T. (2023). Machine learning for numerical weather and climate modelling: A review. Geoscientific Model Development, 16(22), 6433–6477. https://doi.org/10.5194/gmd-16-6433-2023
]Search in Google Scholar
[
Del Ser, J., Casillas-Perez, D., Cornejo-Bueno, L., Prieto-Godino, L., Sanz-Justo, J., Casanova-Mateo, C., & Salcedo-Sanz, S. (2022). Randomization-based machine learning in renewable energy prediction problems: Critical literature review, new results and perspectives. Applied Soft Computing, 118, 108526. https://doi.org/10.1016/J.ASOC.2022.108526
]Search in Google Scholar
[
dos Santos, P. L., Perdicoúlis, T. P. A., Salgado, P. A., & Azevedo, J. C. (2023). Kalman filter for noise reduction of Li-Ion cell discharge current*. IFAC-PapersOnLine, 56(2), 9582–9587. https://doi.org/10.1016/J.IFACOL.2023.10.261
]Search in Google Scholar
[
Dulac-Arnold, G., Levine, N., Mankowitz, D. J., Li, J., Paduraru, C., Gowal, S., & Hester, T. (2021). Challenges of real world reinforcement learning : definitions, benchmarks and analysis. In Machine Learning (Vol. 110, Issue 9). Springer US. https://doi.org/10.1007/s10994-021-05961-4
]Search in Google Scholar
[
Gao, R., Du, L., Suganthan, P. N., Zhou, Q., & Yuen, K. F. (2022). Random vector functional link neural network based ensemble deep learning for short-term load forecasting. Expert Systems with Applications, 206. https://doi.org/10.1016/j.eswa.2022.117784
]Search in Google Scholar
[
Gao, Y., Hu, Z., Chen, W. A., & Liu, M. (2024). Solutions to the insufficiency of label data in renewable energy forecasting: A comparative and integrative analysis of domain adaptation and fine-tuning. Energy, 302, 131863. https://doi.org/10.1016/J.ENERGY.2024.131863
]Search in Google Scholar
[
Gbadega, P. A., & Sun, Y. (2023). Multi-area load frequency regulation of a stochastic renewable energy-based power system with SMES using enhanced-WOA-tuned PID controller. Heliyon, 9(9), e19199. https://doi.org/10.1016/J.HELIYON.2023.E19199
]Search in Google Scholar
[
Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38–50. https://doi.org/10.1016/J.ESR.2019.01.006
]Search in Google Scholar
[
Gill, S. S., Wu, H., Patros, P., Ottaviani, C., Arora, P., Pujol, V. C., Haunschild, D., Parlikad, A. K., Cetinkaya, O., Lutfiyya, H., Stankovski, V., Li, R., Ding, Y., Qadir, J., Abraham, A., Ghosh, S. K., Song, H. H., Sakellariou, R., Rana, O., … Buyya, R. (2024). Modern computing: Vision and challenges. Telematics and Informatics Reports, 13, 100116. https://doi.org/10.1016/J.TELER.2024.100116
]Search in Google Scholar
[
Harada, T., Alba, E., & Luque, G. (2022). A fresh approach to evaluate performance in distributed parallel genetic algorithms. Applied Soft Computing, 119, 108540. https://doi.org/10.1016/J.ASOC.2022.108540
]Search in Google Scholar
[
Hassan, Q., Viktor, P., J. Al-Musawi, T., Mahmood Ali, B., Algburi, S., Alzoubi, H. M., Khudhair Al-Jiboory, A., Zuhair Sameen, A., Salman, H. M., & Jaszczur, M. (2024). The renewable energy role in the global energy Transformations. Renewable Energy Focus, 48, 100545. https://doi.org/10.1016/J.REF.2024.100545
]Search in Google Scholar
[
Horvath, S. M., Muhr, M. M., Kirchner, M., Toth, W., Germann, V., Hundscheid, L., Vacik, H., Scherz, M., Kreiner, H., Fehr, F., Borgwardt, F., Gühnemann, A., Becsi, B., Schneeberger, A., & Gratzer, G. (2022). Handling a complex agenda: A review and assessment of methods to analyse SDG entity interactions. Environmental Science & Policy, 131, 160–176. https://doi.org/10.1016/J.ENVSCI.2022.01.021
]Search in Google Scholar
[
Hougen, D. F., & Shah, S. N. H. (2019). The Evolution of Reinforcement Learning. IEEE Symposium Series on Computational Intelligence (SSCI), 1457–1464. https://doi.org/10.1109/SSCI44817.2019.9003146
]Search in Google Scholar
[
IRENA. (2019). Global Energy Transformation: A Roadmap to 2050 (2019 Edition).
]Search in Google Scholar
[
Jang, B., Kim, M., Harerimana, G., & Kim, J. W. (2019). Q-Learning Algorithms: A Comprehensive Classification and Applications. IEEE Access, 7, 133653–133667. https://doi.org/10.1109/ACCESS.2019.2941229
]Search in Google Scholar
[
Jarrar, A., Wakrime, A. A., & Balouki, Y. (2020). Formal approach to model complex adaptive computing systems. Complex Adaptive Systems Modeling. https://doi.org/10.1186/s40294-020-0069-7
]Search in Google Scholar
[
Jia, W., Sun, M., Lian, J., & Hou, S. (2022). Feature dimensionality reduction: a review. Complex and Intelligent Systems, 8(3), 2663–2693. https://doi.org/10.1007/s40747-021-00637-x
]Search in Google Scholar
[
Kaufmann, T., Weng, P., Bengs, V., & Hüllermeier, E. (2023). A Survey of Reinforcement Learning from Human Feedback. 1–83. https://doi.org/10.48550/arxiv.2312.14925
]Search in Google Scholar
[
Kim, Y.-S., Kim, M. K., Fu, N., Liu, J., Wang, J., & Srebric, J. (2024). Investigating the Impact of Data Normalization Methods on Predicting Electricity Consumption in a Building Using different Artificial Neural Network Models. Sustainable Cities and Society, 105570. https://doi.org/10.1016/J.SCS.2024.105570
]Search in Google Scholar
[
Leitch, R., & Day, C. (2006). Action research and reflective practice : towards a holistic view Reflective Practice : towards a holistic view. Educational Action Research, 0792, 179–193. https://doi.org/10.1080/09650790000200108
]Search in Google Scholar
[
Li, R. (2020). Distributed algorithm design for optimal resource allocation problems via incremental passivity theory. Systems & Control Letters, 138, 104650. https://doi.org/10.1016/J.SYSCONLE.2020.104650
]Search in Google Scholar
[
Liu, J., & Fu, Y. (2023). Renewable energy forecasting: A self-supervised learning-based transformer variant. Energy, 284, 128730. https://doi.org/10.1016/J.ENERGY.2023.128730
]Search in Google Scholar
[
Lucas, M., & Turner, T. (2023). Spiralling the field : A dynamic model exploring reflective maturity, reflective capacity and the expanding reflective field. International Journal of Evidence Based Coaching and Mentoring, 21(1), 211–221. https://doi.org/10.24384/csqw-1210
]Search in Google Scholar
[
Mahender, K., Pulluri, H., Dahiya, P., Basetti, V., & Goud, S. (2023). Performance analysis of proportional integral derivative controller for frequency regulation of an interconnected power system integrated with renewable energy sources. Materials Today: Proceedings, 92, 1464–1470. https://doi.org/10.1016/J.MATPR.2023.05.670
]Search in Google Scholar
[
Mancarella, P. (2014). MES (multi-energy systems): An overview of concepts and evaluation models. Energy, 65, 1–17. https://doi.org/10.1016/J.ENERGY.2013.10.041
]Search in Google Scholar
[
Mancò, G., Tesio, U., Guelpa, E., & Verda, V. (2024). A review on multi energy systems modelling and optimization. Applied Thermal Engineering, 236, 121871. https://doi.org/10.1016/J.APPLTHERMALENG.2023.121871
]Search in Google Scholar
[
Moles, L., Andres, A., Echegaray, G., & Boto, F. (2024). Exploring Data Augmentation and Active Learning Benefits in Imbalanced Datasets Imbalanced Datasets. Mathematics, 12(12), 0–39. https://doi.org/10.3390/math12121898
]Search in Google Scholar
[
Mystakidis, A., Koukaras, P., Tsalikidis, N., Ioannidis, D., & Tjortjis, C. (2024). Energy Forecasting: A Comprehensive Review of Techniques and Technologies. Energies, 17(7), 1–33. https://doi.org/10.3390/en17071662
]Search in Google Scholar
[
Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691–692. https://doi.org/10.1093/biomet/78.3.691
]Search in Google Scholar
[
Nearing, G. S., Ruddell, B. L., Clark, M. P., Nijssen, B., & Peters-Lidard, C. (2018). Benchmarking and process diagnostics of land models. Journal of Hydrometeorology, 19(11), 1835–1852. https://doi.org/10.1175/JHM-D-17-0209.1
]Search in Google Scholar
[
Pasquier, J. T., Rausch, J., Piot, M., Schmoeckel, J., Thaler, M., & Fengler, M. (2024). Improving Renewable Energy Forecasting with Meteomatics EURO1k Model. 17204. https://doi.org/10.5194/egusphere-egu24-17204
]Search in Google Scholar
[
Plevris, V., Solorzano, G., Bakas, N. P., & Ben Seghier, M. E. A. (2022). Investigation of Performance Metrics in Regression Analysis and Machine Learning-Based Prediction Models. World Congress in Computational Mechanics and ECCOMAS Congress, 0–25. https://doi.org/10.23967/eccomas.2022.155
]Search in Google Scholar
[
Rosé, C. P., McLaughlin, E. A., Liu, R., & Koedinger, K. R. (2019). Explanatory learner models: Why machine learning (alone) is not the answer. British Journal of Educational Technology, 50(6), 2943–2958. https://doi.org/10.1111/bjet.12858
]Search in Google Scholar
[
Safaei Pirooz, A. A., Flay, R. G. J., Minola, L., Azorin-Molina, C., & Chen, D. (2020). Effects of sensor response and moving average filter duration on maximum wind gust measurements. Journal of Wind Engineering and Industrial Aerodynamics, 206, 104354. https://doi.org/10.1016/J.JWEIA.2020.104354
]Search in Google Scholar
[
Scharf, L., & Wang, Y. (2023). Testing for Granger causality using a partial coherence statistic. Signal Processing, 213, 109190. https://doi.org/10.1016/J.SIGPRO.2023.109190
]Search in Google Scholar
[
Schön, D. A. (2017). The Reflective Practitioner (1st ed.). Routledge. https://doi.org/https://doi.org/10.4324/9781315237473
]Search in Google Scholar
[
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy Optimization Algorithms. ArXiv Preprint ArXiv:1707.06347., 1–12. https://doi.org/10.48550/arXiv.1707.06347
]Search in Google Scholar
[
Serrat, O. (2017). The Five Whys Technique. Knowledge Solutions, 1–1140. https://doi.org/10.1007/978-981-10-0983-9
]Search in Google Scholar
[
Shiwei, Y., Limin, Y., & Shuangshuang, Z. (2023). A review of optimization modeling and solution methods in renewable energy systems. A Review of Optimization Modeling and Solution Methods in Renewable Energy Systems, 10(2019), 640–671.
]Search in Google Scholar
[
Subramani, K., J, S. S., Habelalmateen, M. I., & Singh, R. (2024). Predicting Wind Energy : Machine Learning from Daily Wind Data. 09.
]Search in Google Scholar
[
Sutton, R. S., Barto, A. G., Sutton, R. S., Barto, A. G., & Richard, S. (2018). Reinforcement Learning : An Introduction (2nd ed.). MIT Press.
]Search in Google Scholar
[
Veigners, G., & Galins, A. (2024). Integrating adaptive artificial intelligence for renewable energy forecasting: analysis of scientific research. 1120–1128. https://doi.org/10.22616/ERDev.2024.23.TF232
]Search in Google Scholar
[
Wang, G., Sadiq, M., Bashir, T., Jain, V., Ali, S. A., & Shabbir, M. S. (2022). The dynamic association between different strategies of renewable energy sources and sustainable economic growth under SDGs. Energy Strategy Reviews, 42, 100886. https://doi.org/10.1016/J.ESR.2022.100886
]Search in Google Scholar
[
Warrier, P. V. (2024). Forecasting of renewable energy sources. Power Systems Operation with 100% Renewable Energy Sources, 15–21. https://doi.org/10.1016/B978-0-443-15578-9.00018-2
]Search in Google Scholar
[
Wen, X., Liao, J., Niu, Q., Shen, N., & Bao, Y. (2024). Deep learning driven hybrid model for short term load forecasting and smart grid information management. Scientific Reports, 1–16. https://doi.org/10.1038/s41598-024-63262-x
]Search in Google Scholar
[
Wurzberger, F., & Schwenker, F. (2024). Learning in Deep Radial Basis Function Networks. Entropy, 26(5). https://doi.org/10.3390/e26050368
]Search in Google Scholar
[
Yaro, A. S., Maly, F., & Prazak, P. (2023). Outlier Detection in Time-Series Receive Signal Strength Observation Using Z-Score Method with S n Scale Estimator for Indoor Localization. Applied Sciences, 13(6), 3900. https://doi.org/10.3390/app13063900
]Search in Google Scholar
[
Yilmaz, S., & Sen, S. (2023). Metaheuristic approaches for solving multiobjective optimization problems. Comprehensive Metaheuristics: Algorithms and Applications, 21–48. https://doi.org/10.1016/B978-0-323-91781-0.00002-8
]Search in Google Scholar
[
Zhao, Z., Alzubaidi, L., Zhang, J., Duan, Y., & Gu, Y. (2024). A comparison review of transfer learning and self-supervised learning: Definitions, applications, advantages and limitations. Expert Systems with Applications, 242, 122807. https://doi.org/10.1016/J.ESWA.2023.122807
]Search in Google Scholar
[
Zohdi, M., Rafiee, M., Kayvanfar, V., & Salamiraad, A. (2022). Demand forecasting based machine learning algorithms on customer information: an applied approach. International Journal of Information Technology (Singapore), 14(4), 1937–1947. https://doi.org/10.1007/s41870-022-00875-3
]Search in Google Scholar