Acceso abierto

Integrating Reflective Practice into the Self-Improvement Cycle Module for Renewable Energy Forecasting Accuracy

, ,  y   
31 dic 2024

Cite
Descargar portada

Albadr, M. A., Tiun, S., Ayob, M., & Al-Dhief, F. (2020). Genetic algorithm based on natural selection theory for optimization problems. Symmetry, 12(11), 1–31. https://doi.org/10.3390/sym12111758 Search in Google Scholar

Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K., Alonso-Moral, J. M., Confalonieri, R., Guidotti, R., Del Ser, J., Díaz-Rodríguez, N., & Herrera, F. (2023). Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Information Fusion, 99, 101805. https://doi.org/10.1016/J.INFFUS.2023.101805 Search in Google Scholar

Annis, D. H. (2006). Kendall’s Advanced Theory of Statistics, Vol. 1: Distribution Theory, Kendall’s Advanced Theory of Statistics, Vol. 2A: Classical Inference and the Linear Model. Journal of the American Statistical Association, 101(476), 1721–1721. https://doi.org/10.1198/jasa.2006.s140 Search in Google Scholar

Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert Systems with Applications, 140, 112896. https://doi.org/10.1016/J.ESWA.2019.112896 Search in Google Scholar

Bennett, D., Niv, Y., & Langdon, A. J. (2021). Value-free reinforcement learning: policy optimization as a minimal model of operant behavior. Current Opinion in Behavioral Sciences, 41, 114–121. https://doi.org/10.1016/J.COBEHA.2021.04.020 Search in Google Scholar

Benti, N. E., Chaka, M. D., & Semie, A. G. (2023). Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects. Sustainability (Switzerland), 15(9). https://doi.org/10.3390/su15097087 Search in Google Scholar

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014 Search in Google Scholar

Chockalingam, S., Pieters, W., Teixeira, A., Khakzad, N., & van Gelder, P. (2019). Combining Bayesian networks and fishbone diagrams to distinguish between intentional attacks and accidental technical failures. Graphical Models for Security, 11086 LNCS, 31–50. https://doi.org/10.1007/978-3-030-15465-3_3 Search in Google Scholar

Dash, C. S. K., Behera, A. K., Dehuri, S., & Ghosh, A. (2023). An outliers detection and elimination framework in classification task of data mining. Decision Analytics Journal, 6, 100164. https://doi.org/10.1016/J.DAJOUR.2023.100164 Search in Google Scholar

De Burgh-Day, C. O., & Leeuwenburg, T. (2023). Machine learning for numerical weather and climate modelling: A review. Geoscientific Model Development, 16(22), 6433–6477. https://doi.org/10.5194/gmd-16-6433-2023 Search in Google Scholar

Del Ser, J., Casillas-Perez, D., Cornejo-Bueno, L., Prieto-Godino, L., Sanz-Justo, J., Casanova-Mateo, C., & Salcedo-Sanz, S. (2022). Randomization-based machine learning in renewable energy prediction problems: Critical literature review, new results and perspectives. Applied Soft Computing, 118, 108526. https://doi.org/10.1016/J.ASOC.2022.108526 Search in Google Scholar

dos Santos, P. L., Perdicoúlis, T. P. A., Salgado, P. A., & Azevedo, J. C. (2023). Kalman filter for noise reduction of Li-Ion cell discharge current*. IFAC-PapersOnLine, 56(2), 9582–9587. https://doi.org/10.1016/J.IFACOL.2023.10.261 Search in Google Scholar

Dulac-Arnold, G., Levine, N., Mankowitz, D. J., Li, J., Paduraru, C., Gowal, S., & Hester, T. (2021). Challenges of real world reinforcement learning : definitions, benchmarks and analysis. In Machine Learning (Vol. 110, Issue 9). Springer US. https://doi.org/10.1007/s10994-021-05961-4 Search in Google Scholar

Gao, R., Du, L., Suganthan, P. N., Zhou, Q., & Yuen, K. F. (2022). Random vector functional link neural network based ensemble deep learning for short-term load forecasting. Expert Systems with Applications, 206. https://doi.org/10.1016/j.eswa.2022.117784 Search in Google Scholar

Gao, Y., Hu, Z., Chen, W. A., & Liu, M. (2024). Solutions to the insufficiency of label data in renewable energy forecasting: A comparative and integrative analysis of domain adaptation and fine-tuning. Energy, 302, 131863. https://doi.org/10.1016/J.ENERGY.2024.131863 Search in Google Scholar

Gbadega, P. A., & Sun, Y. (2023). Multi-area load frequency regulation of a stochastic renewable energy-based power system with SMES using enhanced-WOA-tuned PID controller. Heliyon, 9(9), e19199. https://doi.org/10.1016/J.HELIYON.2023.E19199 Search in Google Scholar

Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38–50. https://doi.org/10.1016/J.ESR.2019.01.006 Search in Google Scholar

Gill, S. S., Wu, H., Patros, P., Ottaviani, C., Arora, P., Pujol, V. C., Haunschild, D., Parlikad, A. K., Cetinkaya, O., Lutfiyya, H., Stankovski, V., Li, R., Ding, Y., Qadir, J., Abraham, A., Ghosh, S. K., Song, H. H., Sakellariou, R., Rana, O., … Buyya, R. (2024). Modern computing: Vision and challenges. Telematics and Informatics Reports, 13, 100116. https://doi.org/10.1016/J.TELER.2024.100116 Search in Google Scholar

Harada, T., Alba, E., & Luque, G. (2022). A fresh approach to evaluate performance in distributed parallel genetic algorithms. Applied Soft Computing, 119, 108540. https://doi.org/10.1016/J.ASOC.2022.108540 Search in Google Scholar

Hassan, Q., Viktor, P., J. Al-Musawi, T., Mahmood Ali, B., Algburi, S., Alzoubi, H. M., Khudhair Al-Jiboory, A., Zuhair Sameen, A., Salman, H. M., & Jaszczur, M. (2024). The renewable energy role in the global energy Transformations. Renewable Energy Focus, 48, 100545. https://doi.org/10.1016/J.REF.2024.100545 Search in Google Scholar

Horvath, S. M., Muhr, M. M., Kirchner, M., Toth, W., Germann, V., Hundscheid, L., Vacik, H., Scherz, M., Kreiner, H., Fehr, F., Borgwardt, F., Gühnemann, A., Becsi, B., Schneeberger, A., & Gratzer, G. (2022). Handling a complex agenda: A review and assessment of methods to analyse SDG entity interactions. Environmental Science & Policy, 131, 160–176. https://doi.org/10.1016/J.ENVSCI.2022.01.021 Search in Google Scholar

Hougen, D. F., & Shah, S. N. H. (2019). The Evolution of Reinforcement Learning. IEEE Symposium Series on Computational Intelligence (SSCI), 1457–1464. https://doi.org/10.1109/SSCI44817.2019.9003146 Search in Google Scholar

IRENA. (2019). Global Energy Transformation: A Roadmap to 2050 (2019 Edition). Search in Google Scholar

Jang, B., Kim, M., Harerimana, G., & Kim, J. W. (2019). Q-Learning Algorithms: A Comprehensive Classification and Applications. IEEE Access, 7, 133653–133667. https://doi.org/10.1109/ACCESS.2019.2941229 Search in Google Scholar

Jarrar, A., Wakrime, A. A., & Balouki, Y. (2020). Formal approach to model complex adaptive computing systems. Complex Adaptive Systems Modeling. https://doi.org/10.1186/s40294-020-0069-7 Search in Google Scholar

Jia, W., Sun, M., Lian, J., & Hou, S. (2022). Feature dimensionality reduction: a review. Complex and Intelligent Systems, 8(3), 2663–2693. https://doi.org/10.1007/s40747-021-00637-x Search in Google Scholar

Kaufmann, T., Weng, P., Bengs, V., & Hüllermeier, E. (2023). A Survey of Reinforcement Learning from Human Feedback. 1–83. https://doi.org/10.48550/arxiv.2312.14925 Search in Google Scholar

Kim, Y.-S., Kim, M. K., Fu, N., Liu, J., Wang, J., & Srebric, J. (2024). Investigating the Impact of Data Normalization Methods on Predicting Electricity Consumption in a Building Using different Artificial Neural Network Models. Sustainable Cities and Society, 105570. https://doi.org/10.1016/J.SCS.2024.105570 Search in Google Scholar

Leitch, R., & Day, C. (2006). Action research and reflective practice : towards a holistic view Reflective Practice : towards a holistic view. Educational Action Research, 0792, 179–193. https://doi.org/10.1080/09650790000200108 Search in Google Scholar

Li, R. (2020). Distributed algorithm design for optimal resource allocation problems via incremental passivity theory. Systems & Control Letters, 138, 104650. https://doi.org/10.1016/J.SYSCONLE.2020.104650 Search in Google Scholar

Liu, J., & Fu, Y. (2023). Renewable energy forecasting: A self-supervised learning-based transformer variant. Energy, 284, 128730. https://doi.org/10.1016/J.ENERGY.2023.128730 Search in Google Scholar

Lucas, M., & Turner, T. (2023). Spiralling the field : A dynamic model exploring reflective maturity, reflective capacity and the expanding reflective field. International Journal of Evidence Based Coaching and Mentoring, 21(1), 211–221. https://doi.org/10.24384/csqw-1210 Search in Google Scholar

Mahender, K., Pulluri, H., Dahiya, P., Basetti, V., & Goud, S. (2023). Performance analysis of proportional integral derivative controller for frequency regulation of an interconnected power system integrated with renewable energy sources. Materials Today: Proceedings, 92, 1464–1470. https://doi.org/10.1016/J.MATPR.2023.05.670 Search in Google Scholar

Mancarella, P. (2014). MES (multi-energy systems): An overview of concepts and evaluation models. Energy, 65, 1–17. https://doi.org/10.1016/J.ENERGY.2013.10.041 Search in Google Scholar

Mancò, G., Tesio, U., Guelpa, E., & Verda, V. (2024). A review on multi energy systems modelling and optimization. Applied Thermal Engineering, 236, 121871. https://doi.org/10.1016/J.APPLTHERMALENG.2023.121871 Search in Google Scholar

Moles, L., Andres, A., Echegaray, G., & Boto, F. (2024). Exploring Data Augmentation and Active Learning Benefits in Imbalanced Datasets Imbalanced Datasets. Mathematics, 12(12), 0–39. https://doi.org/10.3390/math12121898 Search in Google Scholar

Mystakidis, A., Koukaras, P., Tsalikidis, N., Ioannidis, D., & Tjortjis, C. (2024). Energy Forecasting: A Comprehensive Review of Techniques and Technologies. Energies, 17(7), 1–33. https://doi.org/10.3390/en17071662 Search in Google Scholar

Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691–692. https://doi.org/10.1093/biomet/78.3.691 Search in Google Scholar

Nearing, G. S., Ruddell, B. L., Clark, M. P., Nijssen, B., & Peters-Lidard, C. (2018). Benchmarking and process diagnostics of land models. Journal of Hydrometeorology, 19(11), 1835–1852. https://doi.org/10.1175/JHM-D-17-0209.1 Search in Google Scholar

Pasquier, J. T., Rausch, J., Piot, M., Schmoeckel, J., Thaler, M., & Fengler, M. (2024). Improving Renewable Energy Forecasting with Meteomatics EURO1k Model. 17204. https://doi.org/10.5194/egusphere-egu24-17204 Search in Google Scholar

Plevris, V., Solorzano, G., Bakas, N. P., & Ben Seghier, M. E. A. (2022). Investigation of Performance Metrics in Regression Analysis and Machine Learning-Based Prediction Models. World Congress in Computational Mechanics and ECCOMAS Congress, 0–25. https://doi.org/10.23967/eccomas.2022.155 Search in Google Scholar

Rosé, C. P., McLaughlin, E. A., Liu, R., & Koedinger, K. R. (2019). Explanatory learner models: Why machine learning (alone) is not the answer. British Journal of Educational Technology, 50(6), 2943–2958. https://doi.org/10.1111/bjet.12858 Search in Google Scholar

Safaei Pirooz, A. A., Flay, R. G. J., Minola, L., Azorin-Molina, C., & Chen, D. (2020). Effects of sensor response and moving average filter duration on maximum wind gust measurements. Journal of Wind Engineering and Industrial Aerodynamics, 206, 104354. https://doi.org/10.1016/J.JWEIA.2020.104354 Search in Google Scholar

Scharf, L., & Wang, Y. (2023). Testing for Granger causality using a partial coherence statistic. Signal Processing, 213, 109190. https://doi.org/10.1016/J.SIGPRO.2023.109190 Search in Google Scholar

Schön, D. A. (2017). The Reflective Practitioner (1st ed.). Routledge. https://doi.org/https://doi.org/10.4324/9781315237473 Search in Google Scholar

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy Optimization Algorithms. ArXiv Preprint ArXiv:1707.06347., 1–12. https://doi.org/10.48550/arXiv.1707.06347 Search in Google Scholar

Serrat, O. (2017). The Five Whys Technique. Knowledge Solutions, 1–1140. https://doi.org/10.1007/978-981-10-0983-9 Search in Google Scholar

Shiwei, Y., Limin, Y., & Shuangshuang, Z. (2023). A review of optimization modeling and solution methods in renewable energy systems. A Review of Optimization Modeling and Solution Methods in Renewable Energy Systems, 10(2019), 640–671. Search in Google Scholar

Subramani, K., J, S. S., Habelalmateen, M. I., & Singh, R. (2024). Predicting Wind Energy : Machine Learning from Daily Wind Data. 09. Search in Google Scholar

Sutton, R. S., Barto, A. G., Sutton, R. S., Barto, A. G., & Richard, S. (2018). Reinforcement Learning : An Introduction (2nd ed.). MIT Press. Search in Google Scholar

Veigners, G., & Galins, A. (2024). Integrating adaptive artificial intelligence for renewable energy forecasting: analysis of scientific research. 1120–1128. https://doi.org/10.22616/ERDev.2024.23.TF232 Search in Google Scholar

Wang, G., Sadiq, M., Bashir, T., Jain, V., Ali, S. A., & Shabbir, M. S. (2022). The dynamic association between different strategies of renewable energy sources and sustainable economic growth under SDGs. Energy Strategy Reviews, 42, 100886. https://doi.org/10.1016/J.ESR.2022.100886 Search in Google Scholar

Warrier, P. V. (2024). Forecasting of renewable energy sources. Power Systems Operation with 100% Renewable Energy Sources, 15–21. https://doi.org/10.1016/B978-0-443-15578-9.00018-2 Search in Google Scholar

Wen, X., Liao, J., Niu, Q., Shen, N., & Bao, Y. (2024). Deep learning driven hybrid model for short term load forecasting and smart grid information management. Scientific Reports, 1–16. https://doi.org/10.1038/s41598-024-63262-x Search in Google Scholar

Wurzberger, F., & Schwenker, F. (2024). Learning in Deep Radial Basis Function Networks. Entropy, 26(5). https://doi.org/10.3390/e26050368 Search in Google Scholar

Yaro, A. S., Maly, F., & Prazak, P. (2023). Outlier Detection in Time-Series Receive Signal Strength Observation Using Z-Score Method with S n Scale Estimator for Indoor Localization. Applied Sciences, 13(6), 3900. https://doi.org/10.3390/app13063900 Search in Google Scholar

Yilmaz, S., & Sen, S. (2023). Metaheuristic approaches for solving multiobjective optimization problems. Comprehensive Metaheuristics: Algorithms and Applications, 21–48. https://doi.org/10.1016/B978-0-323-91781-0.00002-8 Search in Google Scholar

Zhao, Z., Alzubaidi, L., Zhang, J., Duan, Y., & Gu, Y. (2024). A comparison review of transfer learning and self-supervised learning: Definitions, applications, advantages and limitations. Expert Systems with Applications, 242, 122807. https://doi.org/10.1016/J.ESWA.2023.122807 Search in Google Scholar

Zohdi, M., Rafiee, M., Kayvanfar, V., & Salamiraad, A. (2022). Demand forecasting based machine learning algorithms on customer information: an applied approach. International Journal of Information Technology (Singapore), 14(4), 1937–1947. https://doi.org/10.1007/s41870-022-00875-3 Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Ciencias de la vida, Biotecnología, Botánica, Ecología