This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Hanley, J, Dresser S, Simon W, et al. AAPM Task Group 198 Report: An implementation guide for TG 142 quality assurance of medical accelerators. Med Phys, 2021;48:e830–e885. https://doi.org/10.1002/mp.14992Search in Google Scholar
Das IJ, Cheng C, Watts RJ, et al. Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM. Med Phys. 2008;35:4186-4215. https://doi.org/10.1118/1.2969070Search in Google Scholar
Low DA, Moran, JM, Dempsey JF, et al. Dosimetry tools and techniques for IMRT. Med Phys. 2011;38:1313-1338. https://doi.org/10.1118/1.3514120Search in Google Scholar
Dieterich S, Cavedon C, Chuang CF, et al. Quality assurance for robotic radiosurgery. Med Phys. 2011;38(6):2914-2936. https://doi.org/10.1118/1.3579139Search in Google Scholar
International Atomic Energy Agency (2004). Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer, Technical Reports Series No. 430, IAEA, ViennaSearch in Google Scholar
Crop F, Reynaert N, Pittomvils G, et al. Monte Carlo modeling of the ModuLeaf miniature MLC for small field dosimetry and quality assurance of the clinical treatment planning system. Phys Med Biol. 2007;52:3275-3290. https://doi.org/10.1088/0031-9155/52/11/022Search in Google Scholar
International Atomic Energy Agency (2017). Dosimetry of Small Static Fields Used in External Beam Radiotherapy: An International Code of Practice for Reference and Relative Dose Determination. Technical Reports Series No. 483, IAEA, ViennaSearch in Google Scholar
Akino Y, Fujiwara M, Keita O, et al. Characterization of a microSilicon diode detector for small-field photon beam dosimetry. Journal of Radiation Research. 2020;61(3):410-418. https://doi.org/10.1093/jrr/rraa010Search in Google Scholar
Weber C, Kranzer R, Weidner J, et al. Small field output correction factors of the microSilicon detector and a deeper understanding of their origin by quantifying perturbation factors. Med Phys. 2020;47:3165-3173. https://doi.org/10.1002/mp.14149Search in Google Scholar
Martens C, De Wagter C, De Neve W. The value of the pinpoint ion chamber for characterization of small field segments used in intensity-modulated radiotherapy. Phys Med Biol. 2000;45(9):2519. https://doi.org/10.1088/0031-9155/45/9/306Search in Google Scholar
Büsing I, Brant A, Lange T, et al. Experimental and Monte-Carlo characterization of the novel compact ionization chamber PTW 31023 for reference and relative dosimetry in high energy photon beams. Zeitschrift für Medizinische Physik. 2019;29:303-313. https://doi.org/10.1016/j.zemedi.2019.02.002Search in Google Scholar
Kawata K, Ono T, Hirashima H, et al. Effect of angular dependence for small-field dosimetry using seven different detectors. Med Phys. 2023;50:1274-1289. https://doi.org/10.1002/mp.16198Search in Google Scholar
Scott AJD, Kumar S, Nahum AE, and Fenwick JD, Characterizing the influence of detector density on dosimeter response in non-equilibrium small photon fields. Phys Med Biol. 2012;57:4461. https://doi.org/10.1088/0031-9155/57/14/4461Search in Google Scholar
Sotiropoulos M, Prezado Y . Radiation quality correction factors for improved dosimetry in preclinical minibeam radiotherapy. Med Phys. 2022;49(10):6716-6727. https://doi.org/10.1002/mp.15838Search in Google Scholar
Poudel S, Kulshreshtha A, Zakaria GA, Hartmann GH. Monte Carlo calculations of dose profiles with the ‘given profile” method and comparison with measurements. Rad Phys Chem. 2023;213:111236. https://doi.org/10.1016/j.radphyschem.2023.111236Search in Google Scholar
PTW Dosimetry Detectors for Radiation Therapy. Accessed January 2022. https://www.ptwdosimetry.com/en/overview-pages/detectors-for-radiation-therapy/Search in Google Scholar
Walters B, Kawrakow I, Rogers DWO. DOSXYXnrc Users’ Manual, NRCC Report PIRS 794revB, National Research Council of Canada, 2021Search in Google Scholar
Hartmann GH, Zink K. Decomposition of the dose conversion factor based on fluence spectra of secondary charged particles: Application to lateral dose profiles in photon fields. Med Phys. 2018;45(9):4246-4256. https://doi.org/10.1002/mp.13081Search in Google Scholar
Failing T, Hartmann GH, Wensley FW, et al. Enhancement of the EGSnrc code egs_chamber for fast fluence calculations of charged particles. Zeitschrift für Medizinische Physik. 2022;32(4)417-427. https://doi.org/10.1016/j.zemedi.2022.04.003Search in Google Scholar
Sechopoulos I, Rogers DWO, Bazalova-Carter M, et al. RECORDS: improved Reporting of montE CarlO RaDiation transport Studies: Report of the AAPM Research Committee Task Group 268. Med Phys. 2018;45:e1-e5. https://doi.org/10.1002/mp.12702Search in Google Scholar