Open Access

The sensitivity of contact stresses in the mandibular premolar region to the shape of Zirconia dental implant: A 3D finite element study


Cite

Background: Implant thread profile plays a vital role in magnitude and distribution of contact stresses at the implant-bone interface. The main goal of this study was to evaluate the biomechanical effects of four distinct thread profiles of a dental implant in the mandibular premolar region.

Methods: The dental implant represented the biocompatible Zirconia material and the bone block was modelled as transversely isotropic and elastic material. Three-dimensional finite element simulations were conducted for four distinct thread profiles of a dental implant at 50%, 75%, and 100% osseointegration. An axial static load of 500 N was applied on the abutment surface to estimate the stresses acting within the bones surrounding the implant.

Results: Regions of stress concentration were seen mostly along the mesiodistal direction compared to that in the buccolingual direction. The cortical bone close to the cervical region of the implant and the cortical bone next to the first thread of the implant experienced peak stress concentration. Increasing the degree of osseointegration resulted in increased von-Mises stresses on the implant-cortical transition region, the implant-cancellous transition region, the cortical bone, and the cancellous bone.

Conclusion: The results show that the application of distinct thread profiles at different degrees of osseointegration had significant effect on the stresses distribution contours in the surrounding bony structure. Comparing all four thread profiles, a dental implant with V-thread profile induced lower values of von-Mises stresses and shear stresses on the implant-cortical transition region, implant-cancellous transition region, cortical bone, and cancellous bone.

eISSN:
1898-0309
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics