Open Access

Liquid-liquid two phase-system stabilized by tween 40 and 80 surfactants: multiparametric study


Cite

McClements, D.J. (2010). Emulsion design to improve the delivery of functional lipophilic components. Annu. Rev. Food Sci. Technol. 1(1), 241–269. DOI:10.1146/annurev. food.080708.100722Search in Google Scholar

Okochi, H. & Nakano, M. (2000). Preparation and evaluation of w/o/w type emulsions containing vancomycin. Adv. Drug Deliv. Rev. 45(1), 5–26. DOI: 10.1016/S0169-409X(00)00097-1.Search in Google Scholar

Lee, J.S., Kim, J.W., Han, S.H., Chang, I.S., Kang, H.H., Lee, O.S., Oh, S.G. & Suh, K.D. (2004).The stabilization of L-ascorbic acid in aqueous solution and water-in-oil-in-water double emulsion by controlling pH and electrolyte concentration. Int. J. Cosmet. Sci. 26(4), 217–217. DOI: 10.1111/j.0142-5463.2004.00223_1.x.Search in Google Scholar

Schramm, L.L. (1992). Petroleum Emulsion. In L.L. Schramm (Ed.), Emulsions fundamentals and applications in the petroleum industry (pp. 1–51). Washignton: American Chemical SocietySearch in Google Scholar

McClements, D.J. (2015). Food Emulsions: principles, practices, and techniques (3rd ed), Boca Raton: CRC PressSearch in Google Scholar

McClements, D.J. & Jafari, S.M. (2018). Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci. 251, 55–79. DOI: 10.1016/j.cis.2017.12.001.Search in Google Scholar

Rosen, M.J. & Kunjappu, J.T. (2012). Surfactants and Interfacial Phenomena(4th ed). Hoboken, New Jersey: John Wiley & Sons, Inc.Search in Google Scholar

Kharat, M., Zhang, G. & McClements, D.J. (2018). Stability of curcumin in oil-in-water emulsions: Impact of emulsifier type and concentration on chemical degradation. Food Res. Int. 111, 178–186. DOI: 10.1016/j.foodres.2018.05.021.Search in Google Scholar

Eastwood, C.D., Armi, L. & Lasheras, J.C. (2004).The breakup of immiscible fluids in turbulent flows. J. Fluid Mech. 502, 309–333. DOI: 10.1017/S0022112003007730.Search in Google Scholar

Maaß, S., Paul, N. & Kraume, M. (2012). Influence of the dispersed phase fraction on experimental and predicted drop size distributions in breakage dominated stirred systems. Chem. Eng. Sci. 76, 140–153. DOI: 10.1016/j.ces.2012.03.050.Search in Google Scholar

Abbas, S., Hayat, K., Karangwa, E., Bashari, M. & Zhang, X. (2013). An overview of ultrasound-assisted food-grade nanoemulsions. Food Eng. Rev. 5, 139–157. DOI: 10.1007/s12393-013-9066-3.Search in Google Scholar

Pacek, A.W., Chamsart, S., Nienow, A.W. & Bakker, A. (1999). The influence of impeller type on mean drop size and drop size distribution in an agitated vessel. Chem. Eng. Sci. 54(19), 4211–4222. DOI: 10.1016/S0009-2509(99)00156-6.Search in Google Scholar

Formánek, R., Kysela, B. & Šulc, R. (2019). Drop size evolution kinetics in a liquid-liquid dispersions system in a vessel agitated by a Rushton turbine. Chem. Eng. Trans. 74, 1039–1044. DOI: 10.3303/CET1974174.Search in Google Scholar

Hall, S., Cooke, M., El-Hamouz, A. & Kowalski, A. (2011). Droplet break-up by in-line Silverson rotor-stator mixer. Chem. Eng. Sci. 66(10), 2068–2079. DOI: 10.1016/j.ces.2011.01.054.Search in Google Scholar

Carrillo De Hert, S. & Rodgers, T.L. (2018). Linking continuous and recycle emulsification kinetics for in-line mixers. Chem. Eng. Res. Des. 132, 922–929. DOI: 10.1016/j. cherd.2018.02.003.Search in Google Scholar

Adler-Nissen, J., Mason, S.L. & Jacobsen, C. (2004). Apparatus for emulsion production in small scale and under controlled shear conditions. Food Bioprod. Process. 82(4), 311–319. DOI: 10.1205/fbio.82.4.311.56401.Search in Google Scholar

Atiemo-Obeng, V. A. & Calabrese, R.V. (2003). Rotor–Stator Mixing Devices. In E.L. Paul, V.A. Atiemo-Obeng & S.M. Kresta (Eds), Handbook of Industrial Mixing: Science and Practice (pp. 475–505). Hoboken, New Jersey: John Wiley & Sons, Inc.Search in Google Scholar

John, T.P., Fonte, C.P., Kowalski, A. & Rodgers, T.L. (2019). A comparison of power and flow characteristics between batch and in-line rotor-stator mixers. Chem. Eng. Sci. 202, 481–490. DOI: 10.1016/j.ces.2019.03.015.Search in Google Scholar

Liu, N., Wang, W., Tian, Y., Wu, C. & Gong, J. (2017). Experimental and numerical study for drop size distribution in oil-water dispersions with nonionic surfactant Tween 80. Exp. Therm. Fluid. Sci. 89, 153–165. DOI: 10.1016/j.expthermflusci.2017.08.007.Search in Google Scholar

Roldan-Cruz, C., Vernon-Carter, E.J. & Alvarez-Ramirez, J. (2016). Assessing the stability of Tween 80-based O/W emulsions with cyclic voltammetry and electrical impedance spectroscopy. Colloids Surf. A Physicochem. Eng. Asp. 511, 145–152. DOI: 10.1016/j.colsurfa.2016.09.074.Search in Google Scholar

Chou, D.K., Krishnamurthy, R., Randolph, T.W., Carpenter, J.F. & Manning, M.C. (2005). Effects of Tween 20® and Tween 80® on the stability of Albutropin during agitation. J. Pharm. Sci. 94(6), 1368–1381. DOI: 10.1002/jps.20365.Search in Google Scholar

Patist, A., Bhagwat, S.S., Penfield, K.W., Aikens, P. & Shah, D.O. (2000). On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. J. Surfactants Deterg. 3(1), 53–58. DOI: 0.1007/s11743-000-0113-4.Search in Google Scholar

Bąk, A. & Podgórska, W. (2016). Interfacial and surface tensions of toluene/water and air/water systems with nonionic surfactants Tween 20 and Tween 80. Colloids Surf. A Physicochem. Eng. Asp. 504, 414–425. DOI: 10.1016/j.colsurfa.2016.05.091.Search in Google Scholar

Pacek, A.W., Ding, P. & Nienow, A.W. (2001). The effect of volume fraction and impeller speed on the structure and drop size in aqueous/aqueous dispersions. Chem. Eng. Sci. 56(10), 3247–3255. DOI: 10.1016/S0009-2509(01)00015-X.Search in Google Scholar

El-Hamouz, A., Cooke, M., Kowalski, A. & Sharratt, P. (2009). Dispersion of silicone oil in water surfactant solution: Effect of impeller speed, oil viscosity and addition point on drop size distribution. Chem. Eng. Process.: Process Intensif. 48(2), 633–642. DOI: 10.1016/j.cep.2008.07.008.Search in Google Scholar

Tan, G., Qian, K., Jiang, S., Wang, J. & Wang, J. (2023). CFD-PBM Investigation on Droplet Size Distribution in a Liquid-Liquid Stirred Tank: Effect of Impeller Type. Ind. Eng. Chem. Res. 62(9), 4109–4121. DOI: 10.1021/acs.iecr.2c03695.Search in Google Scholar

Zainal Abidin, M.I.I., Abdul Raman, A.A. & Mohamad Nor,M.I. (2014). Experimental investigations in liquid-liquid dispersion system: Effects of dispersed phase viscosity and impeller speed. Ind. Eng. Chem. Res. 53(15), 6554–6561. DOI: 10.1021/ie5002845.Search in Google Scholar

Tian, Y., Zhou, J., He, C., He, L., Li, X. & Sui, H. (2022). The formation, stabilization and separation of oil–water emulsions: A Review. Processes. 10(4), 738 DOI: 10.3390/pr10040738.Search in Google Scholar

Hohl, L., Röder, V. & Kraume, M. (2019). Dispersion and phase separation of water-oil-amphiphile systems in stirred tanks. Chem. Eng. Technol. 42(8), 1574–1586. DOI: 10.1002/ceat.201800743.Search in Google Scholar

Pugnaloni, L.A., Dickinson, E., Ettelaie, R., Mackie, A.R. & Wilde, P.J. (2004). Competitive adsorption of proteins and low-molecular-weight surfactants: Computer simulation and microscopic imaging. Adv. Colloid Interface Sci. 107(1), 27–49. DOI: 10.1016/j.cis.2003.08.003.Search in Google Scholar

Sun, Z., Yan, X., Xiao, Y., Hu, L., Eggersdorfer, M., Chen, D., Yang, Z. & Weitz, D.A. (2022). Pickering emulsions stabilized by colloidal surfactants: Role of solid particles. Particuology. 64, 153–163. DOI: 10.1016/j.partic.2021.06.004.Search in Google Scholar

Zhang, T., Ding, M., Tao, N., Wang, X. & Zhong, J. (2020). Effects of surfactant type and preparation pH on the droplets and emulsion forms of fish oil-loaded gelatin/surfactant-stabilized emulsions. LWT. 117, 108654. DOI: 10.1016/j.lwt.2019.108654.Search in Google Scholar

Udomrati, S., Cheetangdee, N., Gohtani, S., Surojanametakul, V. & Klongdee, S. (2020). Emulsion stabilization mechanism of combination of esterified maltodextrin and Tween 80 in oil-in-water emulsions. Food Sci. Biotechnol. 29, 387–392. DOI: 10.1007/s10068-019-00681-x.Search in Google Scholar

Atarian, M., Rajaei, A., Tabatabaei, M., Mohsenifar, A. & Bodaghi, H. (2019). Formulation of Pickering sunflower oil-in-water emulsion stabilized by chitosan-stearic acid nanogel and studying its oxidative stability. Carbohydr. Polym. 210, 47–55. DOI: 10.1016/j.carbpol.2019.01.008Search in Google Scholar

Ferreira, A.C., Sullo, A., Winston, S., Norton, I.T. & Norton-Welch, A.B. (2020). Influence of ethanol on emulsions stabilized by low molecular weight surfactants. J. Food Sci. 85(1), 28–35. DOI: 10.1111/1750-3841.14947.Search in Google Scholar

Xu, X., Chen, H., Zhang, Q., Lyu, F., Ding, Y. & Zhou, X. (2020). Effects of oil droplet size and interfacial protein film on the properties of fish myofibrillar protein–oil composite gels. Molecules. 25, 289. DOI: 10.3390/molecules25020289.Search in Google Scholar

Nielsen, C.K., Kjems, J., Mygind, T., Snabe, T. & Meyer, R.L. (2016). Effects of Tween 80 on growth and biofilm formation in laboratory media. Front Microbiol. 7. DOI: 10.3389/fmicb.2016.01878.Search in Google Scholar

Dias, S.V.E., Züge, L.C.B., Santos, A.F. & Scheer, A. de P. (2018). Effect of surfactants and gelatin on the stability, rheology, and encapsulation efficiency of W1/O/W2 multiple emulsions containing avocado oil. J. Food Process Eng. 41(1), e12684. DOI: 10.1111/jfpe.12684.Search in Google Scholar

Fuller, G.T., Considine, T., MacGibbon, A., Golding, M. & Matia-Merino, L. (2018). Effect of Tween emulsifiers on the shear stability of partially crystalline oil-in-water emulsions stabilized by sodium caseinate. Food Biophys. 13, 80–90. DOI: 10.1007/s11483-017-9514-3.Search in Google Scholar

Kentish, S., Wooster, T.J., Ashokkumar, M., Balachandran, S., Mawson, R. & Simons, L. (2008). The use of ultrasonics for nanoemulsion preparation. Innov. Food Sci. Emerg. Technol. 9(2), 170–175. DOI: 10.1016/j.ifset.2007.07.005.Search in Google Scholar

Fells, A. De Santis, A., Colombo, M., Theobald, D.W., Fairweather, M., Muller, F. & Hanson, B. (2022). Predicting mass transfer in liquid–liquid extraction columns. Processes. 10, 968. DOI: 10.3390/pr10050968.Search in Google Scholar

Chung, C. & McClements, D.J. (2014). Structure-function relationships in food emulsions: Improving food quality and sensory perception. Food Struct. 1(2), 106–126. DOI: 10.1016/j. foostr.2013.11.002.Search in Google Scholar

Danov, K.D. (2001). On the viscosity of dilute emulsions. J. Colloid Interface Sci. 235(1), 144–149. DOI: 10.1006/jcis.2000.7315.Search in Google Scholar

Costa, M., Paiva-Martins, F., Losada-Barreiro, S. & Bravo-Díaz, C. (2021). Modeling chemical reactivity at the interfaces of emulsions: Effects of partitioning and temperature. Molecules. 26, 4703. DOI: 10.3390/molecules26154703.Search in Google Scholar

Mahmood, M.E. & Al-Koofee, D.A.F. (2013). Effect of temperature changes on critical micelle concentration for Tween series surfactant. Glob. J. Sci. Front. Res. 13(4), 1–7.Search in Google Scholar

El-Hamouz, A. (2007). Effect of surfactant concentration and operating temperature on the drop size distribution of silicon oil water dispersion. J. Dispers. Sci Technol. 28(5), 797–804. DOI: 10.1080/01932690701345893.Search in Google Scholar

Perinelli, D.R., Cespi, M., Lorusso, N., Palmieri, G.F., Bonacucina, G. & Blasi, P. (2020). Surfactant self-assembling and critical micelle concentration: one approach fits all? Langmuir 36(21), 5745–5753. DOI: 10.1021/acs.langmuir.0c00420.Search in Google Scholar

Drelich, A., Gomez, F., Clausse, D. & Pezron, I. (2010). Evolution of water-in-oil emulsions stabilized with solid particles. Colloids Surf. A Physicochem. Eng. Asp. 365(1–3), 171–177. DOI: 10.1016/j.colsurfa.2010.01.042.Search in Google Scholar

Bak, A. & Podgórska, W. (2012). Investigation of drop breakage and coalescence in the liquid-liquid system with nonionic surfactants Tween 20 and Tween 80. Chem. Eng. Sci. 74, 181–191. DOI: 10.1016/j.ces.2012.02.021.Search in Google Scholar

Murasiewicz, H., Nienow, A.W., Hanga, M.P, Coopman, K. Hewitt, C.J. &Pacek, A.W. (2017). Engineering considerations on the use of liquid/liquid two-phase systems as a cell culture platform. J. Chem. Technol. Biotechnol. 92(7), 1690–1698. DOI: 10.1002/jctb.5166.Search in Google Scholar

Murasiewicz, H. & Esteban, J. (2019). Assessment of the dispersion of glycerol in dimethyl carbonate in a stirred tank. Ind. Eng. Chem. Res. 58(16), 6933–6947. DOI: 10.1021/acs.iecr.9b01061.Search in Google Scholar

Hecht, L.L., Wagner, C., Landfester, K. & Schuchmann, H.P. (2011). Surfactant concentration regime in miniemulsion polymerization for the formation of MMA nanodroplets by high-pressure homogenization. Langmuir. 27(6), 2279–2285. DOI: 10.1021/la104480s.Search in Google Scholar

Pichot, R., Spyropoulos, F. & Norton, I.T. (2010). O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration. J. Colloid Interface Sci. 352(1), 128–135. DOI: 10.1016/j.jcis.2010.08.021.Search in Google Scholar

Politova, N.I., Tcholakova, S., Tsibranska, S., Denkov, N.D. & Muelheims, K. (2017). Coalescence stability of water-in-oil drops: Effects of drop size and surfactant concentration. Colloids Surf. A Physicochem. Eng. Asp. 531, 32–39. DOI: 10.1016/j.colsurfa.2017.07.085.Search in Google Scholar

Santos, J., Trujillo-Cayado, L.A., Calero, N. & Muñoz, J. (2014). Physical characterization of eco-friendly O/W emulsions developed through a strategy based on product engineering principles. AIChE J. 60(7), 2644–2653. DOI: 10.1002/aic.14460.Search in Google Scholar

Maaß, S., Wollny, S., Sperling, R. & Kraume, M. (2009). Numerical and experimental analysis of particle strain and breakage in turbulent dispersions. Chem. Eng. Res. Des. 87(4), 565–572. DOI: 10.1016/j.cherd.2009.01.002.Search in Google Scholar

Shinnar, R. (1961). On the behaviour of liquid dispersions in mixing vessels. J. Fluid Mech. 10(2), 259–275. DOI: 10.1017/S0022112061000214.Search in Google Scholar

Leng, D.E. & Calabrese, R.V. (2003). Immiscible Liquid–Liquid Systems. In E.L. Paul, V.A. Atiemo-Obeng & S.M. Kresta (Eds), Handbook of Industrial Mixing: Science and Practice (pp. 639–753). Hoboken, New Jersey: John Wiley & Sons, Inc.Search in Google Scholar

Hinze, J.O. (1955). Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1(3), 289–295. DOI: 10.1002/aic.690010303.Search in Google Scholar

Chen, H.T. & Middleman, S. (1967). Drop size distribution in agitated liquid-liquid systems. AIChE J. 13(5), 989–995. DOI: 10.1002/aic.690130529.Search in Google Scholar

Janssen, J.J.M., Boon, A. & Agterof, W.G.M. (1994). Influence of dynamic interfacial properties on droplet breakup in simple shear flow. AIChE J. 40(12), 1929–1939. DOI: 10.1002/aic.690401202.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering