Accesso libero

Liquid-liquid two phase-system stabilized by tween 40 and 80 surfactants: multiparametric study

 e   
03 apr 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

McClements, D.J. (2010). Emulsion design to improve the delivery of functional lipophilic components. Annu. Rev. Food Sci. Technol. 1(1), 241–269. DOI:10.1146/annurev. food.080708.100722Search in Google Scholar

Okochi, H. & Nakano, M. (2000). Preparation and evaluation of w/o/w type emulsions containing vancomycin. Adv. Drug Deliv. Rev. 45(1), 5–26. DOI: 10.1016/S0169-409X(00)00097-1.Search in Google Scholar

Lee, J.S., Kim, J.W., Han, S.H., Chang, I.S., Kang, H.H., Lee, O.S., Oh, S.G. & Suh, K.D. (2004).The stabilization of L-ascorbic acid in aqueous solution and water-in-oil-in-water double emulsion by controlling pH and electrolyte concentration. Int. J. Cosmet. Sci. 26(4), 217–217. DOI: 10.1111/j.0142-5463.2004.00223_1.x.Search in Google Scholar

Schramm, L.L. (1992). Petroleum Emulsion. In L.L. Schramm (Ed.), Emulsions fundamentals and applications in the petroleum industry (pp. 1–51). Washignton: American Chemical SocietySearch in Google Scholar

McClements, D.J. (2015). Food Emulsions: principles, practices, and techniques (3rd ed), Boca Raton: CRC PressSearch in Google Scholar

McClements, D.J. & Jafari, S.M. (2018). Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci. 251, 55–79. DOI: 10.1016/j.cis.2017.12.001.Search in Google Scholar

Rosen, M.J. & Kunjappu, J.T. (2012). Surfactants and Interfacial Phenomena(4th ed). Hoboken, New Jersey: John Wiley & Sons, Inc.Search in Google Scholar

Kharat, M., Zhang, G. & McClements, D.J. (2018). Stability of curcumin in oil-in-water emulsions: Impact of emulsifier type and concentration on chemical degradation. Food Res. Int. 111, 178–186. DOI: 10.1016/j.foodres.2018.05.021.Search in Google Scholar

Eastwood, C.D., Armi, L. & Lasheras, J.C. (2004).The breakup of immiscible fluids in turbulent flows. J. Fluid Mech. 502, 309–333. DOI: 10.1017/S0022112003007730.Search in Google Scholar

Maaß, S., Paul, N. & Kraume, M. (2012). Influence of the dispersed phase fraction on experimental and predicted drop size distributions in breakage dominated stirred systems. Chem. Eng. Sci. 76, 140–153. DOI: 10.1016/j.ces.2012.03.050.Search in Google Scholar

Abbas, S., Hayat, K., Karangwa, E., Bashari, M. & Zhang, X. (2013). An overview of ultrasound-assisted food-grade nanoemulsions. Food Eng. Rev. 5, 139–157. DOI: 10.1007/s12393-013-9066-3.Search in Google Scholar

Pacek, A.W., Chamsart, S., Nienow, A.W. & Bakker, A. (1999). The influence of impeller type on mean drop size and drop size distribution in an agitated vessel. Chem. Eng. Sci. 54(19), 4211–4222. DOI: 10.1016/S0009-2509(99)00156-6.Search in Google Scholar

Formánek, R., Kysela, B. & Šulc, R. (2019). Drop size evolution kinetics in a liquid-liquid dispersions system in a vessel agitated by a Rushton turbine. Chem. Eng. Trans. 74, 1039–1044. DOI: 10.3303/CET1974174.Search in Google Scholar

Hall, S., Cooke, M., El-Hamouz, A. & Kowalski, A. (2011). Droplet break-up by in-line Silverson rotor-stator mixer. Chem. Eng. Sci. 66(10), 2068–2079. DOI: 10.1016/j.ces.2011.01.054.Search in Google Scholar

Carrillo De Hert, S. & Rodgers, T.L. (2018). Linking continuous and recycle emulsification kinetics for in-line mixers. Chem. Eng. Res. Des. 132, 922–929. DOI: 10.1016/j. cherd.2018.02.003.Search in Google Scholar

Adler-Nissen, J., Mason, S.L. & Jacobsen, C. (2004). Apparatus for emulsion production in small scale and under controlled shear conditions. Food Bioprod. Process. 82(4), 311–319. DOI: 10.1205/fbio.82.4.311.56401.Search in Google Scholar

Atiemo-Obeng, V. A. & Calabrese, R.V. (2003). Rotor–Stator Mixing Devices. In E.L. Paul, V.A. Atiemo-Obeng & S.M. Kresta (Eds), Handbook of Industrial Mixing: Science and Practice (pp. 475–505). Hoboken, New Jersey: John Wiley & Sons, Inc.Search in Google Scholar

John, T.P., Fonte, C.P., Kowalski, A. & Rodgers, T.L. (2019). A comparison of power and flow characteristics between batch and in-line rotor-stator mixers. Chem. Eng. Sci. 202, 481–490. DOI: 10.1016/j.ces.2019.03.015.Search in Google Scholar

Liu, N., Wang, W., Tian, Y., Wu, C. & Gong, J. (2017). Experimental and numerical study for drop size distribution in oil-water dispersions with nonionic surfactant Tween 80. Exp. Therm. Fluid. Sci. 89, 153–165. DOI: 10.1016/j.expthermflusci.2017.08.007.Search in Google Scholar

Roldan-Cruz, C., Vernon-Carter, E.J. & Alvarez-Ramirez, J. (2016). Assessing the stability of Tween 80-based O/W emulsions with cyclic voltammetry and electrical impedance spectroscopy. Colloids Surf. A Physicochem. Eng. Asp. 511, 145–152. DOI: 10.1016/j.colsurfa.2016.09.074.Search in Google Scholar

Chou, D.K., Krishnamurthy, R., Randolph, T.W., Carpenter, J.F. & Manning, M.C. (2005). Effects of Tween 20® and Tween 80® on the stability of Albutropin during agitation. J. Pharm. Sci. 94(6), 1368–1381. DOI: 10.1002/jps.20365.Search in Google Scholar

Patist, A., Bhagwat, S.S., Penfield, K.W., Aikens, P. & Shah, D.O. (2000). On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. J. Surfactants Deterg. 3(1), 53–58. DOI: 0.1007/s11743-000-0113-4.Search in Google Scholar

Bąk, A. & Podgórska, W. (2016). Interfacial and surface tensions of toluene/water and air/water systems with nonionic surfactants Tween 20 and Tween 80. Colloids Surf. A Physicochem. Eng. Asp. 504, 414–425. DOI: 10.1016/j.colsurfa.2016.05.091.Search in Google Scholar

Pacek, A.W., Ding, P. & Nienow, A.W. (2001). The effect of volume fraction and impeller speed on the structure and drop size in aqueous/aqueous dispersions. Chem. Eng. Sci. 56(10), 3247–3255. DOI: 10.1016/S0009-2509(01)00015-X.Search in Google Scholar

El-Hamouz, A., Cooke, M., Kowalski, A. & Sharratt, P. (2009). Dispersion of silicone oil in water surfactant solution: Effect of impeller speed, oil viscosity and addition point on drop size distribution. Chem. Eng. Process.: Process Intensif. 48(2), 633–642. DOI: 10.1016/j.cep.2008.07.008.Search in Google Scholar

Tan, G., Qian, K., Jiang, S., Wang, J. & Wang, J. (2023). CFD-PBM Investigation on Droplet Size Distribution in a Liquid-Liquid Stirred Tank: Effect of Impeller Type. Ind. Eng. Chem. Res. 62(9), 4109–4121. DOI: 10.1021/acs.iecr.2c03695.Search in Google Scholar

Zainal Abidin, M.I.I., Abdul Raman, A.A. & Mohamad Nor,M.I. (2014). Experimental investigations in liquid-liquid dispersion system: Effects of dispersed phase viscosity and impeller speed. Ind. Eng. Chem. Res. 53(15), 6554–6561. DOI: 10.1021/ie5002845.Search in Google Scholar

Tian, Y., Zhou, J., He, C., He, L., Li, X. & Sui, H. (2022). The formation, stabilization and separation of oil–water emulsions: A Review. Processes. 10(4), 738 DOI: 10.3390/pr10040738.Search in Google Scholar

Hohl, L., Röder, V. & Kraume, M. (2019). Dispersion and phase separation of water-oil-amphiphile systems in stirred tanks. Chem. Eng. Technol. 42(8), 1574–1586. DOI: 10.1002/ceat.201800743.Search in Google Scholar

Pugnaloni, L.A., Dickinson, E., Ettelaie, R., Mackie, A.R. & Wilde, P.J. (2004). Competitive adsorption of proteins and low-molecular-weight surfactants: Computer simulation and microscopic imaging. Adv. Colloid Interface Sci. 107(1), 27–49. DOI: 10.1016/j.cis.2003.08.003.Search in Google Scholar

Sun, Z., Yan, X., Xiao, Y., Hu, L., Eggersdorfer, M., Chen, D., Yang, Z. & Weitz, D.A. (2022). Pickering emulsions stabilized by colloidal surfactants: Role of solid particles. Particuology. 64, 153–163. DOI: 10.1016/j.partic.2021.06.004.Search in Google Scholar

Zhang, T., Ding, M., Tao, N., Wang, X. & Zhong, J. (2020). Effects of surfactant type and preparation pH on the droplets and emulsion forms of fish oil-loaded gelatin/surfactant-stabilized emulsions. LWT. 117, 108654. DOI: 10.1016/j.lwt.2019.108654.Search in Google Scholar

Udomrati, S., Cheetangdee, N., Gohtani, S., Surojanametakul, V. & Klongdee, S. (2020). Emulsion stabilization mechanism of combination of esterified maltodextrin and Tween 80 in oil-in-water emulsions. Food Sci. Biotechnol. 29, 387–392. DOI: 10.1007/s10068-019-00681-x.Search in Google Scholar

Atarian, M., Rajaei, A., Tabatabaei, M., Mohsenifar, A. & Bodaghi, H. (2019). Formulation of Pickering sunflower oil-in-water emulsion stabilized by chitosan-stearic acid nanogel and studying its oxidative stability. Carbohydr. Polym. 210, 47–55. DOI: 10.1016/j.carbpol.2019.01.008Search in Google Scholar

Ferreira, A.C., Sullo, A., Winston, S., Norton, I.T. & Norton-Welch, A.B. (2020). Influence of ethanol on emulsions stabilized by low molecular weight surfactants. J. Food Sci. 85(1), 28–35. DOI: 10.1111/1750-3841.14947.Search in Google Scholar

Xu, X., Chen, H., Zhang, Q., Lyu, F., Ding, Y. & Zhou, X. (2020). Effects of oil droplet size and interfacial protein film on the properties of fish myofibrillar protein–oil composite gels. Molecules. 25, 289. DOI: 10.3390/molecules25020289.Search in Google Scholar

Nielsen, C.K., Kjems, J., Mygind, T., Snabe, T. & Meyer, R.L. (2016). Effects of Tween 80 on growth and biofilm formation in laboratory media. Front Microbiol. 7. DOI: 10.3389/fmicb.2016.01878.Search in Google Scholar

Dias, S.V.E., Züge, L.C.B., Santos, A.F. & Scheer, A. de P. (2018). Effect of surfactants and gelatin on the stability, rheology, and encapsulation efficiency of W1/O/W2 multiple emulsions containing avocado oil. J. Food Process Eng. 41(1), e12684. DOI: 10.1111/jfpe.12684.Search in Google Scholar

Fuller, G.T., Considine, T., MacGibbon, A., Golding, M. & Matia-Merino, L. (2018). Effect of Tween emulsifiers on the shear stability of partially crystalline oil-in-water emulsions stabilized by sodium caseinate. Food Biophys. 13, 80–90. DOI: 10.1007/s11483-017-9514-3.Search in Google Scholar

Kentish, S., Wooster, T.J., Ashokkumar, M., Balachandran, S., Mawson, R. & Simons, L. (2008). The use of ultrasonics for nanoemulsion preparation. Innov. Food Sci. Emerg. Technol. 9(2), 170–175. DOI: 10.1016/j.ifset.2007.07.005.Search in Google Scholar

Fells, A. De Santis, A., Colombo, M., Theobald, D.W., Fairweather, M., Muller, F. & Hanson, B. (2022). Predicting mass transfer in liquid–liquid extraction columns. Processes. 10, 968. DOI: 10.3390/pr10050968.Search in Google Scholar

Chung, C. & McClements, D.J. (2014). Structure-function relationships in food emulsions: Improving food quality and sensory perception. Food Struct. 1(2), 106–126. DOI: 10.1016/j. foostr.2013.11.002.Search in Google Scholar

Danov, K.D. (2001). On the viscosity of dilute emulsions. J. Colloid Interface Sci. 235(1), 144–149. DOI: 10.1006/jcis.2000.7315.Search in Google Scholar

Costa, M., Paiva-Martins, F., Losada-Barreiro, S. & Bravo-Díaz, C. (2021). Modeling chemical reactivity at the interfaces of emulsions: Effects of partitioning and temperature. Molecules. 26, 4703. DOI: 10.3390/molecules26154703.Search in Google Scholar

Mahmood, M.E. & Al-Koofee, D.A.F. (2013). Effect of temperature changes on critical micelle concentration for Tween series surfactant. Glob. J. Sci. Front. Res. 13(4), 1–7.Search in Google Scholar

El-Hamouz, A. (2007). Effect of surfactant concentration and operating temperature on the drop size distribution of silicon oil water dispersion. J. Dispers. Sci Technol. 28(5), 797–804. DOI: 10.1080/01932690701345893.Search in Google Scholar

Perinelli, D.R., Cespi, M., Lorusso, N., Palmieri, G.F., Bonacucina, G. & Blasi, P. (2020). Surfactant self-assembling and critical micelle concentration: one approach fits all? Langmuir 36(21), 5745–5753. DOI: 10.1021/acs.langmuir.0c00420.Search in Google Scholar

Drelich, A., Gomez, F., Clausse, D. & Pezron, I. (2010). Evolution of water-in-oil emulsions stabilized with solid particles. Colloids Surf. A Physicochem. Eng. Asp. 365(1–3), 171–177. DOI: 10.1016/j.colsurfa.2010.01.042.Search in Google Scholar

Bak, A. & Podgórska, W. (2012). Investigation of drop breakage and coalescence in the liquid-liquid system with nonionic surfactants Tween 20 and Tween 80. Chem. Eng. Sci. 74, 181–191. DOI: 10.1016/j.ces.2012.02.021.Search in Google Scholar

Murasiewicz, H., Nienow, A.W., Hanga, M.P, Coopman, K. Hewitt, C.J. &Pacek, A.W. (2017). Engineering considerations on the use of liquid/liquid two-phase systems as a cell culture platform. J. Chem. Technol. Biotechnol. 92(7), 1690–1698. DOI: 10.1002/jctb.5166.Search in Google Scholar

Murasiewicz, H. & Esteban, J. (2019). Assessment of the dispersion of glycerol in dimethyl carbonate in a stirred tank. Ind. Eng. Chem. Res. 58(16), 6933–6947. DOI: 10.1021/acs.iecr.9b01061.Search in Google Scholar

Hecht, L.L., Wagner, C., Landfester, K. & Schuchmann, H.P. (2011). Surfactant concentration regime in miniemulsion polymerization for the formation of MMA nanodroplets by high-pressure homogenization. Langmuir. 27(6), 2279–2285. DOI: 10.1021/la104480s.Search in Google Scholar

Pichot, R., Spyropoulos, F. & Norton, I.T. (2010). O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration. J. Colloid Interface Sci. 352(1), 128–135. DOI: 10.1016/j.jcis.2010.08.021.Search in Google Scholar

Politova, N.I., Tcholakova, S., Tsibranska, S., Denkov, N.D. & Muelheims, K. (2017). Coalescence stability of water-in-oil drops: Effects of drop size and surfactant concentration. Colloids Surf. A Physicochem. Eng. Asp. 531, 32–39. DOI: 10.1016/j.colsurfa.2017.07.085.Search in Google Scholar

Santos, J., Trujillo-Cayado, L.A., Calero, N. & Muñoz, J. (2014). Physical characterization of eco-friendly O/W emulsions developed through a strategy based on product engineering principles. AIChE J. 60(7), 2644–2653. DOI: 10.1002/aic.14460.Search in Google Scholar

Maaß, S., Wollny, S., Sperling, R. & Kraume, M. (2009). Numerical and experimental analysis of particle strain and breakage in turbulent dispersions. Chem. Eng. Res. Des. 87(4), 565–572. DOI: 10.1016/j.cherd.2009.01.002.Search in Google Scholar

Shinnar, R. (1961). On the behaviour of liquid dispersions in mixing vessels. J. Fluid Mech. 10(2), 259–275. DOI: 10.1017/S0022112061000214.Search in Google Scholar

Leng, D.E. & Calabrese, R.V. (2003). Immiscible Liquid–Liquid Systems. In E.L. Paul, V.A. Atiemo-Obeng & S.M. Kresta (Eds), Handbook of Industrial Mixing: Science and Practice (pp. 639–753). Hoboken, New Jersey: John Wiley & Sons, Inc.Search in Google Scholar

Hinze, J.O. (1955). Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1(3), 289–295. DOI: 10.1002/aic.690010303.Search in Google Scholar

Chen, H.T. & Middleman, S. (1967). Drop size distribution in agitated liquid-liquid systems. AIChE J. 13(5), 989–995. DOI: 10.1002/aic.690130529.Search in Google Scholar

Janssen, J.J.M., Boon, A. & Agterof, W.G.M. (1994). Influence of dynamic interfacial properties on droplet breakup in simple shear flow. AIChE J. 40(12), 1929–1939. DOI: 10.1002/aic.690401202.Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Chimica idustriale, Biotecnologia, Ingegneria chimica, Ingegneria di processo