1. bookVolume 77 (2021): Issue 4 (December 2021)
Journal Details
License
Format
Journal
eISSN
2084-0535
First Published
30 Mar 2015
Publication timeframe
4 times per year
Languages
English
Open Access

Underwater Laser Imaging

Published Online: 01 Feb 2023
Volume & Issue: Volume 77 (2021) - Issue 4 (December 2021)
Page range: 39 - 52
Received: 16 Sep 2021
Accepted: 27 Sep 2021
Journal Details
License
Format
Journal
eISSN
2084-0535
First Published
30 Mar 2015
Publication timeframe
4 times per year
Languages
English

1. Zaneveld, J., and W. S. Pegau, 2003a: The prediction of diver visibility and its relation to spectral beam attenuation. Tech. rep., WESTERN ENVIRONMENTAL TECHNOLOGY LAB INC (WET LABS INC) PHILOMATH OR.10.21236/ADA633767 Search in Google Scholar

2. Zaneveld, J. R. V., andW. S. Pegau, 2003b: Robust underwater visibility parameter. Optics express, 11 (23), 2997–3009.10.1364/OE.11.002997 Search in Google Scholar

3. Jaffe, J. S., 2014: Underwater optical imaging: the past, the present, and the prospects. IEEE Journal of Oceanic Engineering, 40 (3), 683–700.10.1109/JOE.2014.2350751 Search in Google Scholar

4. Cochenour, B., K. Dunn, A. Laux, and L. Mullen, 2017a: Experimental measurements of the magnitude and phase response of high-frequency modulated light underwater. Applied optics, 56 (14), 4019–4024.10.1364/AO.56.00401929047532 Search in Google Scholar

5. Dalgleish, F. R., A. K. Vuorenkoski, and B. Ouyang, 2013: Extendedrange undersea laser imaging: Current research status and a glimpse at future technologies. Marine Technology Society Journal, 47 (5).10.4031/MTSJ.47.5.16 Search in Google Scholar

6. Stramski, D., E. Boss, D. Bogucki, and K. J. Voss, 2004: The role of seawater constituents in light backscattering in the ocean. Progressin Oceanography, 61 (1), 27–56.10.1016/j.pocean.2004.07.001 Search in Google Scholar

7. Luchinin, A., and L. Dolin, 2014: Application of complex-modulated waves of photon density for instrumental vision in turbid media. Doklady Physics, Pleiades Publishing, Vol. 59, 170–172.10.1134/S1028335814040089 Search in Google Scholar

8. Mobley, C. D., 1994a: Light and water: radiative transfer in natural waters. Academic Press. Search in Google Scholar

9. Mobley, C. D., 1994b: Light and Water. Radiative Transfer in Natural Waters. Academic Press. Search in Google Scholar

10. Pope, R. M., and E. S. Fry, 1997: Absorption spectrum (380–700 nm) of pure water. ii. integrating cavity measurements. Applied optics, 36 (33), 8710–8723.10.1364/AO.36.00871018264420 Search in Google Scholar

11. Petzold, T. J., 1972: Volume scattering functions for selected ocean waters. Tech. rep., Scripps Institution of Oceanography La Jolla Ca Visibility Lab.10.21236/AD0753474 Search in Google Scholar

12. Luchinin, A. G., and M. Y. Kirillin, 2016: Temporal and frequency characteristics of a narrow light beam in sea water. Applied Optics, 55 (27), 7756–7762.10.1364/AO.55.00775627661608 Search in Google Scholar

13. Bogucki, D., J. A. Domaradzki, D. Stramski, and R. Zaneveld, 1998: Comparison of nearforward scattering on turbulence and particles. Atmos.– Ocean, 37, 4669–4677.10.1364/AO.37.00466918285924 Search in Google Scholar

14. Bogucki, D., J. Domaradzki, C. Anderson, H. Wijesekera, R. Zaneveld, and C. Moore, 2007: Optical measurement of rates of dissipation of temperature variance due to oceanic turbulence. 15 (12), 7224–7230.10.1364/OE.15.00722419547043 Search in Google Scholar

15. MacDonald, I. R., J. S. Chu, F. Reilly, M. Blincow, and D. Olivier, 1995: Deep-ocean use of the sm2000 laser line scanner on submarine nr-1 demonstrates system potential for industry and basic science. ’Challenges of Our Changing Global Environment’. Conference Proceedings. OCEANS’95 MTS/IEEE, IEEE, Vol. 1, 555–565. Search in Google Scholar

16. Dalgleish, F., F. Caimi, W. Britton, and C. Andren, 2007: An auvdeployable pulsed laser line scan (plls) imaging sensor. OCEANS 2007, IEEE, 1–5.10.1109/OCEANS.2007.4449184 Search in Google Scholar

17. Wang, C.-C., and D. Tang, 2009: Seafloor roughness measured by a laser line scanner and a conductivity probe. IEEE Journal of Oceanic Engineering, 34 (4), 459–465.10.1109/JOE.2009.2026986 Search in Google Scholar

18. Churnside, J. H., J. J. Wilson, and V. V. Tatarskii, 2001: Airborne lidar for fisheries applications. Optical Engineering, 40 (3), 406 – 414, doi:10.1117/1.1348000, URL https://doi.org/10.1117/1.1348000.10.1117/1.1348000 Search in Google Scholar

19. Hou, W., S. Woods, E. Jarosz, W. Goode, and A. Weidemann, 2012: Optical turbulence on underwater image degradation in natural environments. Applied optics, 51 (14), 2678–2686.10.1364/AO.51.00267822614489 Search in Google Scholar

20. Mullen, L. J., and V. M. Contarino, 2000: Hybrid lidar-radar: seeing through the scatter. IEEE Microwave magazine, 1 (3), 42–48.10.1109/6668.871186 Search in Google Scholar

21. Mullen, L. J., V. M. Contarino, A. Laux, B. M. Concannon, J. P. Davis, M. P. Strand, and B. W. Coles, 1999: Modulated laser line scanner for enhanced underwater imaging. Airborne and In-Water Underwater Imaging, SPIE, Vol. 3761, 2–9.10.1117/12.366470 Search in Google Scholar

22. Cochenour, B., S. P. O’Connor, and L. J. Mullen, 2013: Suppression of forward-scattered light using high-frequency intensity modulation. Optical Engineering, 53 (5), 051 406.10.1117/1.OE.53.5.051406 Search in Google Scholar

23. Cochenour, B., L. Rodgers, A. Laux, L. Mullen, K. Morgan, J. K. Miller, and E. G. Johnson, 2017b: The detection of objects in a turbid underwater medium using orbital angular momentum (oam). Ocean Sensing and Monitoring IX, SPIE, Vol. 10186, 1018603. Search in Google Scholar

24. Perez, P., W. D. Jemison, L. Mullen, and A. Laux, 2012: Techniques to enhance the performance of hybrid lidar-radar ranging systems. 2012 Oceans, IEEE, 1–6. Search in Google Scholar

25. Jantzi, A., W. Jemison, A. Laux, L. Mullen, and B. Cochenour, 2018: Enhanced underwater ranging using an optical vortex. Optics express, 26 (3), 2668–2674.10.1364/OE.26.00266829401804 Search in Google Scholar

26. Gloge, D., E. Chinnock, and D. Ring, 1972: Direct measurement of the (baseband) frequency response of multimode fibers. Applied Optics, 11 (7), 1534–1538.10.1364/AO.11.00153420119182 Search in Google Scholar

27. Helkey, R., D. Derickson, A. Mar, J. Wasserbauer, and J. Bowers, 1993: Millimeter-wave signal generation using semiconductor diode lasers. Microwave and optical technology letters, 6 (1), 1–5.10.1002/mop.4650060103 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo