Cite

1. Zaneveld, J., and W. S. Pegau, 2003a: The prediction of diver visibility and its relation to spectral beam attenuation. Tech. rep., WESTERN ENVIRONMENTAL TECHNOLOGY LAB INC (WET LABS INC) PHILOMATH OR.10.21236/ADA633767 Search in Google Scholar

2. Zaneveld, J. R. V., andW. S. Pegau, 2003b: Robust underwater visibility parameter. Optics express, 11 (23), 2997–3009.10.1364/OE.11.002997 Search in Google Scholar

3. Jaffe, J. S., 2014: Underwater optical imaging: the past, the present, and the prospects. IEEE Journal of Oceanic Engineering, 40 (3), 683–700.10.1109/JOE.2014.2350751 Search in Google Scholar

4. Cochenour, B., K. Dunn, A. Laux, and L. Mullen, 2017a: Experimental measurements of the magnitude and phase response of high-frequency modulated light underwater. Applied optics, 56 (14), 4019–4024.10.1364/AO.56.00401929047532 Search in Google Scholar

5. Dalgleish, F. R., A. K. Vuorenkoski, and B. Ouyang, 2013: Extendedrange undersea laser imaging: Current research status and a glimpse at future technologies. Marine Technology Society Journal, 47 (5).10.4031/MTSJ.47.5.16 Search in Google Scholar

6. Stramski, D., E. Boss, D. Bogucki, and K. J. Voss, 2004: The role of seawater constituents in light backscattering in the ocean. Progressin Oceanography, 61 (1), 27–56.10.1016/j.pocean.2004.07.001 Search in Google Scholar

7. Luchinin, A., and L. Dolin, 2014: Application of complex-modulated waves of photon density for instrumental vision in turbid media. Doklady Physics, Pleiades Publishing, Vol. 59, 170–172.10.1134/S1028335814040089 Search in Google Scholar

8. Mobley, C. D., 1994a: Light and water: radiative transfer in natural waters. Academic Press. Search in Google Scholar

9. Mobley, C. D., 1994b: Light and Water. Radiative Transfer in Natural Waters. Academic Press. Search in Google Scholar

10. Pope, R. M., and E. S. Fry, 1997: Absorption spectrum (380–700 nm) of pure water. ii. integrating cavity measurements. Applied optics, 36 (33), 8710–8723.10.1364/AO.36.00871018264420 Search in Google Scholar

11. Petzold, T. J., 1972: Volume scattering functions for selected ocean waters. Tech. rep., Scripps Institution of Oceanography La Jolla Ca Visibility Lab.10.21236/AD0753474 Search in Google Scholar

12. Luchinin, A. G., and M. Y. Kirillin, 2016: Temporal and frequency characteristics of a narrow light beam in sea water. Applied Optics, 55 (27), 7756–7762.10.1364/AO.55.00775627661608 Search in Google Scholar

13. Bogucki, D., J. A. Domaradzki, D. Stramski, and R. Zaneveld, 1998: Comparison of nearforward scattering on turbulence and particles. Atmos.– Ocean, 37, 4669–4677.10.1364/AO.37.00466918285924 Search in Google Scholar

14. Bogucki, D., J. Domaradzki, C. Anderson, H. Wijesekera, R. Zaneveld, and C. Moore, 2007: Optical measurement of rates of dissipation of temperature variance due to oceanic turbulence. 15 (12), 7224–7230.10.1364/OE.15.00722419547043 Search in Google Scholar

15. MacDonald, I. R., J. S. Chu, F. Reilly, M. Blincow, and D. Olivier, 1995: Deep-ocean use of the sm2000 laser line scanner on submarine nr-1 demonstrates system potential for industry and basic science. ’Challenges of Our Changing Global Environment’. Conference Proceedings. OCEANS’95 MTS/IEEE, IEEE, Vol. 1, 555–565. Search in Google Scholar

16. Dalgleish, F., F. Caimi, W. Britton, and C. Andren, 2007: An auvdeployable pulsed laser line scan (plls) imaging sensor. OCEANS 2007, IEEE, 1–5.10.1109/OCEANS.2007.4449184 Search in Google Scholar

17. Wang, C.-C., and D. Tang, 2009: Seafloor roughness measured by a laser line scanner and a conductivity probe. IEEE Journal of Oceanic Engineering, 34 (4), 459–465.10.1109/JOE.2009.2026986 Search in Google Scholar

18. Churnside, J. H., J. J. Wilson, and V. V. Tatarskii, 2001: Airborne lidar for fisheries applications. Optical Engineering, 40 (3), 406 – 414, doi:10.1117/1.1348000, URL https://doi.org/10.1117/1.1348000.10.1117/1.1348000 Search in Google Scholar

19. Hou, W., S. Woods, E. Jarosz, W. Goode, and A. Weidemann, 2012: Optical turbulence on underwater image degradation in natural environments. Applied optics, 51 (14), 2678–2686.10.1364/AO.51.00267822614489 Search in Google Scholar

20. Mullen, L. J., and V. M. Contarino, 2000: Hybrid lidar-radar: seeing through the scatter. IEEE Microwave magazine, 1 (3), 42–48.10.1109/6668.871186 Search in Google Scholar

21. Mullen, L. J., V. M. Contarino, A. Laux, B. M. Concannon, J. P. Davis, M. P. Strand, and B. W. Coles, 1999: Modulated laser line scanner for enhanced underwater imaging. Airborne and In-Water Underwater Imaging, SPIE, Vol. 3761, 2–9.10.1117/12.366470 Search in Google Scholar

22. Cochenour, B., S. P. O’Connor, and L. J. Mullen, 2013: Suppression of forward-scattered light using high-frequency intensity modulation. Optical Engineering, 53 (5), 051 406.10.1117/1.OE.53.5.051406 Search in Google Scholar

23. Cochenour, B., L. Rodgers, A. Laux, L. Mullen, K. Morgan, J. K. Miller, and E. G. Johnson, 2017b: The detection of objects in a turbid underwater medium using orbital angular momentum (oam). Ocean Sensing and Monitoring IX, SPIE, Vol. 10186, 1018603.10.1117/12.2264626 Search in Google Scholar

24. Perez, P., W. D. Jemison, L. Mullen, and A. Laux, 2012: Techniques to enhance the performance of hybrid lidar-radar ranging systems. 2012 Oceans, IEEE, 1–6.10.1109/OCEANS.2012.6404963 Search in Google Scholar

25. Jantzi, A., W. Jemison, A. Laux, L. Mullen, and B. Cochenour, 2018: Enhanced underwater ranging using an optical vortex. Optics express, 26 (3), 2668–2674.10.1364/OE.26.00266829401804 Search in Google Scholar

26. Gloge, D., E. Chinnock, and D. Ring, 1972: Direct measurement of the (baseband) frequency response of multimode fibers. Applied Optics, 11 (7), 1534–1538.10.1364/AO.11.00153420119182 Search in Google Scholar

27. Helkey, R., D. Derickson, A. Mar, J. Wasserbauer, and J. Bowers, 1993: Millimeter-wave signal generation using semiconductor diode lasers. Microwave and optical technology letters, 6 (1), 1–5.10.1002/mop.4650060103 Search in Google Scholar