1. bookVolume 65 (2020): Issue 3 (September 2020)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Summer–winter contrast in carbon isotope and elemental composition of total suspended particulate matter in the urban atmosphere of Krakow, Southern Poland

Published Online: 06 Jul 2020
Volume & Issue: Volume 65 (2020) - Issue 3 (September 2020)
Page range: 181 - 191
Received: 22 Aug 2019
Accepted: 27 Feb 2020
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

The city of Krakow located in southern Poland ranks among the most polluted urban agglomerations in Europe. There are persisting controversies with respect to impact of different pollution sources operating in Krakow agglomeration on air quality within the city. The presented pilot study was aimed at exploring the possibilities offered by elemental and carbon isotope composition of total suspended particulate matter (TSPM) for better characterization of its sources in Krakow atmosphere. The analyses of carbon isotope composition of total carbon in the investigated TSPM samples were supplemented by parallel analyses of radiocarbon content in atmospheric carbon dioxide (CO2). This study revealed large seasonal variability of carbon isotope composition in the analysed TSPM samples. This large variability reflects seasonally varying contribution of different sources of fossil and modern carbon to the TSPM pool. The elemental composition of TSPM also reveals distinct seasonal variability of the analysed elements, reflecting varying mixture of natural and anthropogenic sources of those elements. A linear relationship between the fossil carbon load in the TSPM samples and the fossil carbon load in the atmospheric CO2 was found, pointing to the presence of additional source of anthropogenic carbonaceous particles not associated with burning of fossil fuels. Wearing of tyres and asphalt pavement is most probably the main source of such particles.

Keywords

1. Baklanov, A., Molina, L. T., & Gauss, M. (2016). Megacities, air quality and climate. Atmos. Environ., 126, 235–249. DOI: 10.1016/j.atmosenv.2015.11.059.10.1016/j.atmosenv.2015.11.059Search in Google Scholar

2. World Human Organization. (2016). Urban Ambient Air Pollution databaseUpdate 2016. Retrieved August 20, 2019, from www.who.int/airpollution/data/cities-2016/en/.Search in Google Scholar

3. Molina, L. T., Madronich, S., Gaffney, J. S., Apel, E., de Foy, B., Fast, J., Ferrare, R., Herndon, S., Jimenez, J. L., Lamb, B., Osornio-Vargas, A. R., Russell, P., Schauer, J. J., Stevens, P. S., Volkamer, R., & Zavala, M. (2010). An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation. Atmos. Chem. Phys., 10, 8697–8760. DOI: 10.5194/acp-10-8697-2010.10.5194/acp-10-8697-2010Search in Google Scholar

4. Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L., Molina, M. J., & Zhang, R. (2014). Elucidating severe urban haze formation in China. PNAS, 111(49), 17373–17378. DOI: 10.1073/pnas.1419604111.10.1073/pnas.1419604111Search in Google Scholar

5. Zou, Y., Wang, Y., Zhang, Y., & Koo, J. -H. (2017). Arctic sea ice, Eurasia snow, and extreme winter haze in China. Sci. Adv., 3(3), e1602751. DOI: 10.1126/sciadv.1602751.10.1126/sciadv.1602751Search in Google Scholar

6. Fang, G. -C., Wu, Y. -S., Huang, S. -H., & Rau, J. -Y. (2005). Review of atmospheric metallic elements in Asia during 2000–2004. Atmos. Environ., 39(17), 3003–3013. DOI: 10.1016/j.atmosenv.2005.01.042.10.1016/j.atmosenv.2005.01.042Search in Google Scholar

7. Rodriguez, S., Querol, X., Alastuey, A., & la Rosa, J. D. (2007). Atmospheric particulate matter and air quality in the Mediterranean: a review. Environ. Chem. Lett., 5(1), 1–7. DOI: 10.1007/s10311-006-0071-0.10.1007/s10311-006-0071-0Search in Google Scholar

8. Cuccia, E., Massabo, D., Ariola, V., Bove, M. C., Fermo, P., Piazzalunga, A., & Prati, P. (2013). Size-resolved comprehensive characterization of airborne particulate matter. Atmos. Environ., 67, 14–26. DOI: 10.1016/j.atmosenv.2012.10.045.10.1016/j.atmosenv.2012.10.045Search in Google Scholar

9. Lammel, G., Rohrl, A., & Schreiber, H. (2002). Atmospheric lead and bromine in Germany. Post abatement levels, variabilities and trends. Environ. Sci. Pollut. Res., 9(6), 397–404. DOI: 10.1007/BF02987589.10.1007/BF02987589Search in Google Scholar

10. Vallius, M., Janssen, N. A. H., Heinrich, J., Hoek, G., Ruuskanen, J., Cyrys, J., Van Grieken, R., de Hartog, J. J., Kreyling, W. G., & Pekkanen, J. (2005). Sources and elemental composition of ambient PM2.5 in three European cities. Sci. Total Environ., 337(1/3), 147–162. DOI: 10.1016/j.scitotenv.2004.06.018.10.1016/j.scitotenv.2004.06.018Search in Google Scholar

11. Pant, P., & Harrison, R. M. (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements. A review. Atmos. Environ., 77, 78–97. DOI: 10.1016/j. atmosenv.2013.04.028.Search in Google Scholar

12. Chueinta, W., Hopke, P. K., & Paatero, P. (2000). Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. Atmos. Environ., 34(20), 3319–3329. DOI: 10.1016/S1352-2310(99)00433-1.10.1016/S1352-2310(99)00433-1Search in Google Scholar

13. Amato, F., Alastuey, A., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai, G., Severi, M., Becagli, S., Gianelle, V. L., Colombi, C., Alves, C., Custodio, D., Nunes, T., Cerqueira, M., Pio, C., Eleftheriadis, K., Diapouli, E., Reche, C., Cruz Minguillon, M., Manousakas, M. I., Maggos, T., Vratolis, S., Harrison, R. M., & Querol, X. (2016). AIRUSE-LIVE+: a harmonized PM speciation and source apportionment in five southern European cities. Atmos. Chem. Phys., 16, 3289–3309. DOI: 10.5194/acp-16-3289-2016.10.5194/acp-16-3289-2016Search in Google Scholar

14. Samek, L., Stegowski, Z., Furman, L., Styszko, K., Szramowiat, K., & Fiedor, J. (2017). Quantitative assessment of PM2.5 sources and their seasonal variation in Krakow. Water Air Soil Pollut., 228, 290. DOI: 10.1007/s11270-017-3483-5.10.1007/s11270-017-3483-5552250528794573Search in Google Scholar

15. Chow, J. C., Watson, J. G., Crow, D., Lowental, D. H., & Merrifield, T. (2001). Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Sci. Technol., 34(1), 23–34. DOI: 10.1080/02786820119073.10.1080/02786820119073Search in Google Scholar

16. Górka, M., Rybicki, M., Simoneit, B. R. T., & Mary-nowski, L. (2014). Determination of multiple organic matter sources in aerosol PM10 from Wrocław, Poland using molecular and stable carbon isotope compositions. Atmos. Environ., 89, 739–748. DOI: 10.1016/j. atmosenv.2014.02.064.Search in Google Scholar

17. Aguilera, J., & Whigham, L. D. (2018). Using the 13C/12C isotope ratio to characterize the emission sources of airborne particulate matter: a review of literature. Isot. Environ. Health Stud., 54(6), 573–587. DOI: 10.1080/10256016.2018.1531854.10.1080/10256016.2018.153185430326739Search in Google Scholar

18. Currie, L. A. (2000). Evolution of multidisciplinary frontiers of 14C aerosol science. Radiocarbon, 42(1), 115–126. DOI: 10.1017/S003382220005308X.10.1017/S003382220005308XSearch in Google Scholar

19. Heal, M. R. (2014). The application of carbon-14 analyses to the source apportionment of atmospheric carbonaceous particulate matter: a review. Anal. Bioanal. Chem., 406, 81–98. DOI: 10.1007/s00216-013-7404-1.10.1007/s00216-013-7404-124136253Search in Google Scholar

20. Szidat, S., Jenk, T., Gäggeler, H., Synal, H. -A., Fisseha, R., Baltensperger, U., Kalberer, M., Samburova, V., Reimann, S., Kasper-Giebl, A., & Hajdas, I. (2004). Radiocarbon (14C)-deduced biogenic and anthropogenic contributions to organic carbon (OC) of urban aerosols from Zürich, Switzerland. Atmos. Environ., 38, 4035–4044. DOI: 10.1016/j.atmosenv.2004.03.066.10.1016/j.atmosenv.2004.03.066Search in Google Scholar

21. Zotter, P., El-Haddad, I., Zhang, Y., Hayes, P. L., Zhang, X., Lin, Y. -H., Wacker, L., Schnelle-Kreis, J., Abbaszade, G., Zimmermann, R., Surratt, J. D., Weber, R., Jimenez, J. L., Szidat, S., Baltensperger, U., & Prévôt, A. S. H. (2014). Diurnal cycle of fossil and nonfossil carbon using radiocarbon analyses during CalNex. J. Geophys. Res. Atmos., 119, 6818–6835. DOI: 10.1002/2013JD021114.10.1002/2013JD021114Search in Google Scholar

22. Zhang, Y. -L., Huang, R. -J., El Haddad, I., Ho, K. -F., Cao, J. -J., Han, Y., Zotter, P., Bozzetti, C., Daellenbach, K. R., Canonaco, F., Slowik, J. G., Salazar, G., Szwikowski, M., Schnelle-Kreis, J., Abbaszade, G., Zimmermann, R., Baltensperger, U., Prévôt, A. S. H., & Szidat, S. (2015). Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013. Atmos. Chem. Phys., 15, 1299–1312. DOI: 10.5194/acp-15-1299-2015.10.5194/acp-15-1299-2015Search in Google Scholar

23. Dusek, U., Hitzenberger, R., Kasper-Giebl, A., Kistler, M., Meijer, H. A. J., Szidat, S., Wacker, L., Holzinger, R., & Röckmann, T. (2017). Sources and formation mechanisms of carbonaceous aerosol at a regional background site in the Netherlands: insights from a year-long radiocarbon study. Atmos. Chem. Phys., 17, 3233–3251. DOI: 10.5194/acp-17-3233-2017.10.5194/acp-17-3233-2017Search in Google Scholar

24. Garbaras, A., Šapolaitė, J., Garbarienė, I., Ežerinskis, Z., Mašalaite-Nalivaikė, A., Skipitytė, R., Plukis, A., & Remeikis, V. (2018). Aerosol source (biomass, traffic and coal emission) apportionment in Lithuania using stable carbon and radiocarbon analysis. Isot. Environ. Health Stud., 54(5), 463–474. DOI: 10.1080/10256016.2018.1509074.10.1080/10256016.2018.150907430114951Search in Google Scholar

25. Samek, L. (2012). Source apportionment of the PM10 fraction of particulate matter collected in Krakow, Poland. Nukleonika, 57(4), 601–606.Search in Google Scholar

26. Samek, L., Zwozdziak, A., & Sowka, I. (2013). Chemical characterization and source identification of Particulate Matter PM10 in a rural and an urban site in Poland. Environ. Prot. Eng., 39(4), 91–103. DOI: 10.5277/epe130408.Search in Google Scholar

27. World Health Organization. (2005). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. Summary of risk assessment. WHO.Search in Google Scholar

28. European Union. (2008). Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Official Journal of the European Union, 11.6.2008, L 152. Available from https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32008L0050.Search in Google Scholar

29. Chief Inspectorate of Environmental Protection. (2017). Air quality portalPM10 data from Krakow; Air quality stations for the period 20052015. Warszawa: CIEP. Retrieved July 30, 2019, from http://powietrze.gios.gov.pl. (in Polish).Search in Google Scholar

30. Bajorek-Zydroń, K., & Wężyk, P. (Eds.). (2016). Atlas pokrycia terenu i przewietrzania Krakowa (Atlas of land cover and ventilation of Krakow). Krakow: Urząd Miasta Krakowa. Available from http://geo.ur.krakow.pl/download/pobierz.php?file=publikacje/literatura/Wezyk_Atlas_2016_tekst.pdf.Search in Google Scholar

31. Statistical Office of Poland. (2017). Statistical Office of Poland information portalTransport and communication in Kraków; vehicles. Retrieved July 30, 2019, from http://bdl.stat.gov.pl. (in Polish).Search in Google Scholar

32. Zimnoch, M., Wach, P., Chmura, L., Gorczyca, Z., Rozanski, K., Godlowska, J., Mazur, J., Kozak, K., & Jeričević, A. (2014). Factors controlling temporal variability of near-ground atmospheric 222Rn concentration over central Europe. Atmos. Chem. Phys., 14(18), 9567–9581. DOI: 10.5194/acp-14-9567-2014.10.5194/acp-14-9567-2014Search in Google Scholar

33. Holynska, B., Najman, J., Ostachowicz, B., Ostachowicz, J., Trabska, J., & Wegrzynek, D. (1996). Analytical application of multifunctional system of EDXRF. J. Trace Microprobe Tech., 14(1), 119–130.Search in Google Scholar

34. Vekemans, B., Janssens, K., Vincze, L., Adams, F., & Van Espen, P. (1994). Analysis of X-ray spectra by iterative least squares (AXIL). New developments. X-Ray Spectrom., 23(6), 278–285. DOI: 10.1002/xrs.1300230609.10.1002/xrs.1300230609Search in Google Scholar

35. Major, I., Furu, E., Janovics, R., Hajdas, I., Kertész, Zs., & Molnár, M. (2012). Method development for the 14C measurement of atmospheric aerosols. Acta Phys. Debrecina, XLVI, 83–95.Search in Google Scholar

36. Mook, W. G., & van der Plicht, J. (1999). Reporting 14C activities and concentrations. Radiocarbon, 41(3), 227–239. DOI: 10.1017/S0033822200057106.10.1017/S0033822200057106Search in Google Scholar

37. Kuc, T., Rozanski, K., Zimnoch, M., Necki, J., Chmura, L., & Jelen, D. (2007). Two decades of regular observations of 14CO2 and 13CO2 content in atmospheric carbon dioxide in central Europe: long-term changes of regional anthropogenic fossil fuel CO2 emissions. Radiocarbon, 49(2), 807–816. DOI: 10.1017/S0033822200042685.10.1017/S0033822200042685Search in Google Scholar

38. Kuc, T. (1991). Concentration and carbon isotopic composition of atmospheric CO2 in southern Poland. Tellus B, 43(5), 373–378. DOI: 10.3402/tellusb. v43i5.15411.Search in Google Scholar

39. Florkowski, T., Grabczak, J., Kuc, T., & Rozanski, K. (1975). Determination of radiocarbon in water by gas or liquid scintillation counting. Nukleonika, 20(11/12), 1053–1066.Search in Google Scholar

40. Levin, I., Schuchard, J., Kromer, B., & Münnich, K. O. (1989). The continental European Suess effect. Radiocarbon, 31(3), 431–440. DOI: 10.1017/S0033822200012017.10.1017/S0033822200012017Search in Google Scholar

41. Levin, I., Naegler, T., Kromer, B., Diehl, M., Francey, R., Gomez-Pelaez, A., Steele, P., Wagenbach, D., Weller, R., & Worthy, D. (2010). Observations and modeling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B, 62(1), 26–46. DOI: 10.1111/j.1600-0889.2009.00446.x.10.1111/j.1600-0889.2009.00446.xSearch in Google Scholar

42. Zimnoch, M., Jelen, D., Galkowski, M., Kuc, T., Necki, J., Chmura, L., Gorczyca, Z., Jasek, A., & Rozanski, K. (2012). Partitioning of atmospheric carbon dioxide over Central Europe: insights from combined measurements of CO2 mixing ratios and their carbon isotope composition. Isot. Environ. Health Stud., 48(3), 421–433. DOI: 10.1080/10256016.2012.663368.10.1080/10256016.2012.66336822472094Search in Google Scholar

43. Mazzei, F., D’Alessandro, A., Lucarelli, F., Nava, S., Prati, P., Valli, G., & Vecchi, R. (2008). Characterization of particulate matter sources in an urban environment. Sci. Total Environ., 401(1/3), 81–89. DOI: 10.1016/j.scitotenv.2008.03.008.10.1016/j.scitotenv.2008.03.00818486189Search in Google Scholar

44. Yttri, K. E., Simpson, D., Stenstrőm, K., Puxbaum, H., & Svendby, T. (2011). Source apportionment of the carbonaceous aerosol in Norway – quantitative estimates based on 14C, thermal-optical and organic tracer analysis. Atmos. Chem. Phys., 11(17), 9375–9394. DOI: 10.5194/acp-11-9375-2011.10.5194/acp-11-9375-2011Search in Google Scholar

45. Huang, J., Kang, S., Shen, C., Cong, Z., Liu, K., Wang, W., & Liu, L. (2010). Seasonal variations and sources of ambient fossil and biogenic-derived carbonaceous aerosols based on 14C measurements in Lhasa, Tibet. Atmos. Res., 96(4), 553–559. DOI: 10.1016/j.atmosres.2010.01.003.10.1016/j.atmosres.2010.01.003Search in Google Scholar

46. Vivaldo, G., Masi, E., Taiti, C., Caldarelli, G., & Mancuso, S. (2017). The network of plants volatile organic compounds. Sci. Rep., 7, 11050. DOI: 10.1038/s41598-017-10975-x.10.1038/s41598-017-10975-x559122928887468Search in Google Scholar

47. Sensuła, B., & Pazdur, A. (2013). Stable carbon isotopes of glucose received from pine tree-rings as bioindicators of local industrial emission of CO2 in Niepołomice Forest (1950–2000). Isot. Environ. Health Stud., 49(4), 532–541. DOI: 10.1080/10256016.2013.865026.10.1080/10256016.2013.86502624313374Search in Google Scholar

48. Knorre, A. A., Siegwolf, R. T. W., Saurer, M., Sidorova, O. V., Vaganov, E. A., & Kirdianov, A. V. (2010). Twentieth century trends in tree ring stable isotopes (δ13C and δ18O of Larix sibirica under dry conditions in the forest steppe in Siberia. J. Geophys. Res., 115(G3), G03002. DOI: 10.1029/2009JG000930.10.1029/2009JG000930Search in Google Scholar

49. Kornilova, A., Huang, L., Saccon, M., & Rudoplh, J. (2016). Stable carbon isotope ratios of ambient aromatic volatile organic compounds. Atmos. Chem. Phys., 16(18), 11755–11772. DOI: 10.5194/acp-16-11755-2016.10.5194/acp-16-11755-2016Search in Google Scholar

50. Kanpanon, N., Kesemsap, P., Thaler, P., Kositsup, B., Gay, F., Lacote, R., & Epron, D. (2015). Carbon isotope composition of latex does not reflect temporal variations of photosynthetic carbon isotope discrimination in rubber trees (Hevea brasiliensis). Tree Physiol., 35(11), 1166–1175. DOI: 10.1093/treephys/tpv070.10.1093/treephys/tpv07026358051Search in Google Scholar

51. Lewan, M. D., & Kotarba, M. J. (2014). Thermal-maturity limit for primary thermogenic-gas generation from humic coals as determined by hydrous pyrolysis. AAPG Bull., 98, 2581–2610. DOI: 10.1306/06021413204.10.1306/06021413204Search in Google Scholar

52. Widory, D. (2006). Combustibles, fuels and their combustion products: A view through carbon isotopes. Combust. Theory Model., 10(5), 831–841. DOI: 10.1080/13647830600720264.10.1080/13647830600720264Search in Google Scholar

53. Zimnoch, M. (2009). Stable isotope composition of carbon dioxide emitted from anthropogenic sources in the Krakow region. Nukleonika, 54(4), 291–295.Search in Google Scholar

54. Mašalaitė, A., Garbaras, A., & Remeikis, V. (2012). Stable isotopes in environmental investigations. Lith. J. Phys., 52(3), 261–268.10.3952/physics.v52i3.2478Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo