1. bookVolume 65 (2020): Issue 2 (June 2020)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Open Access

214Bi/214Pb radioactivity ratio three-year monitoring in rainwater in Prague

Published Online: 29 May 2020
Volume & Issue: Volume 65 (2020) - Issue 2 (June 2020)
Page range: 115 - 119
Received: 02 Dec 2019
Accepted: 17 Jan 2020
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Continuous monitoring of natural gamma radiation in air has been carried out, during December 2014 – January 2018, with 1-min cyclic measurement in Prague, Czech Republic using a NaI(Tl) probe. The 214Bi/214Pb ratio as a tracer in rainwater has been investigated to study its variations related to both the ambient dose equivalent rate per hour and the amount of rainfall. A hybrid methodology for time series analysis, composed of the aggregation of two signal decomposition methods (multiple linear regression and empirical mode decomposition) and one forecasting method (support vector regression), has been applied to identify the anomalies in the studied signals in order to better find correlations among them. The results show a strong correlation between the ambient dose equivalent rate and the 214Bi/214Pb ratio values and between both these signals and rainfall amount ≥5 mm/h. Furthermore, the considered descendants of radon are mainly responsible for the overall ambient dose equivalent rate.

Keywords

1. Miyamoto, Y., Oda, T., Adachi, T., Noguchi, H., Nishimura, H., & Usuda, S. (2001). Technical preparations for atmospheric radioactivity monitoring. Nukleonika, 46(4), 123–126.Search in Google Scholar

2. Green, N. (2001). The NRPB environmental radioactivity surveillance programme. Nukleonika, 46(4), 127–129.Search in Google Scholar

3. La Verde, G., Roca, V., Sabbarese, C., Ambrosino, F., & Pugliese, M. (2018). Correlation of the activity concentration of gas radon in environments located on ground floor and underground level. Nuovo Cimento C, 41(6), 219. https://doi.org/10.1393/ncc/i2018-18219-0.Search in Google Scholar

4. Sabbarese, C., Ambrosino, F., Buompane, R., Pugliese, M., & Roca, V. (2017). Analysis of alpha particles spectra of the Radon and Thoron progenies generated by an electrostatic collection detector using new software. Appl. Radiat. Isot., 122, 180–185. https://doi.org/10.1016/j.apradiso.2017.01.042.10.1016/j.apradiso.2017.01.042Search in Google Scholar

5. Ambrosino, F., Buompane, R., Pugliese, M., Roca, V., & Sabbarese, C. (2018). RaMon A system for radon and thoron measurement. Nuovo Cimento C, 41(6), 222. https://doi.org/10.1393/ncc/i2018-18222-5.Search in Google Scholar

6. La Verde, G., Roca, V., Sabbarese, C., Ambrosino, F., & Pugliese, M. (2018). The equilibrium factor in the radon dose calculation in the archaeological site of Acquedotto Augusteo del Serino in Naples. Nuovo Cimento C, 41(6), 218. https://doi.org/10.1393/ncc/i2018-18218-1.Search in Google Scholar

7. Stobiński, M., Jędrzejek, F., & Kubica, B. (2018). Preliminary studies on the spatial distribution of artificial 137Cs and natural gamma radionuclides in the region of the Ojców National Park, Poland. Nukleonika, 63(4), 105–111. DOI: 10.2478/nuka-2018-0013.10.2478/nuka-2018-0013Search in Google Scholar

8. Gan, N., Cen, K., Ye, R., & Li, T. (2018). Rapid estimation of environmental radioactivity surrounding Xiangshan uranium deposits, Jiangxi province, Eastern China. Nukleonika, 63(4), 113–121. DOI: 10.2478/nuka-2018-0014.10.2478/nuka-2018-0014Search in Google Scholar

9. Horng, M. C., & Jiang, S. H. (2004). In situ measurements of gamma-ray intensity from radon progeny in rainwater. Radiat. Meas., 38, 23–30. https://doi.org/10.1016/S1350-4487(03)00285-3.10.1016/S1350-4487(03)00285-3Search in Google Scholar

10. Baker, S. I. (1999). Detection of radon decay products in rainwater. Health Phys., 77(5), S71–S76. DOI: 10.1097/00004032-199911001-00005.10.1097/00004032-199911001-0000510527152Search in Google Scholar

11. Moriizumi, J., Kondo, D., Kojima, Y., Liu, H., Hirao, S., & Yamazawa, H. (2015). 214Bi/214Pb radioactivity ratio in rainwater for residence time estimation of cloud droplets and raindrops. Radiat. Prot. Dosim., 167(1/3), 55–58. https://doi.org/10.1093/rpd/ncv220.10.1093/rpd/ncv22025911410Search in Google Scholar

12. Voltaggio, M. (2012). Radon progeny in hydrometeors at the Earth’s surface. Radiat. Prot. Dosim., 150(3), 334–341. https://doi.org/10.1093/rpd/ncr402.10.1093/rpd/ncr40222039270Search in Google Scholar

13. Foote, S. R., & Frick, N. E. (2001). Time variations of natural gamma radiation. Environ. Geosci., 8(2), 130–139. DOI: 10.1111/j.1526-0984.2001.82005.pp.x.Search in Google Scholar

14. Sabbarese, C., Ambrosino, F., De Cicco, F., Pugliese, M., Quarto, M., & Roca, V. (2017). Signal decomposition and analysis for the identification of periodic and anomalous phenomena in Radon time-series. Radiat. Prot. Dosim., 177(1/2), 202–206. https://doi.org/10.1093/rpd/ncx159.10.1093/rpd/ncx15929036347Search in Google Scholar

15. Duan, W. Y., Han, Y., Huang, L. M., Zhao, B. B., & Wang, M. H. (2016). A hybrid EMD-SVR model for the short-term prediction of significant wave height. Ocean Eng., 124, 54–73. https://doi.org/10.1016/j.oceaneng.2016.05.049.10.1016/j.oceaneng.2016.05.049Search in Google Scholar

16. Ambrosino, F., De Cesare, W., Roca, V., & Sabbarese, C. (2019). Mathematical and geophysical methods for searching anomalies of the Radon signal related to earthquakes. J. Phys-Conf. Series, 1226(1), 012025. https://doi.org/10.1088/1742-6596/1226/1/012025.10.1088/1742-6596/1226/1/012025Search in Google Scholar

17. Ambrosino, F., Pugliese, M., Roca, V., & Sabbarese, C. (2018). Innovative methodologies for the analysis of radon time series. Nuovo Cimento C, 41(6), 223. https://doi.org/10.1393/ncc/i2018-18223-4.Search in Google Scholar

18. Ambrosino, F., Thinová, L., Briestenský, M., & Sabbarese, C. (2019). Analysis of radon time series recorded in Slovak and Czech caves for the detection of anomalies due to seismic phenomena. Radiat. Prot. Dosim., 186(2/3), 428–432. https://doi.org/10.1093/rpd/ncz245.10.1093/rpd/ncz24531832681Search in Google Scholar

19. Ambrosino, F., Thinová, L., Briestenský, M., & Sabbarese, C. (2019). Anomalies identification of Earth’s rotation rate time series (2012-2017) for possible correlation with strong earthquakes occurrence. Geod. Geodyn., 10(6), 455–459. https://doi.org/10.1016/j.geog.2019.06.002.10.1016/j.geog.2019.06.002Search in Google Scholar

20. United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Vol. 1: Sources. New York: United Nations.Search in Google Scholar

21. Ripley, B. D. (1977). Modelling spatial patterns. J. R. Stat. Ser. Soc. B-Stat. Methodol., 39(2), 172–192.10.1111/j.2517-6161.1977.tb01615.xSearch in Google Scholar

22. Ambrosino, F. (2020). Study on a peak shape fitting model for the analysis of alpha-particle spectra. Appl. Radiat. Isot., 159, 109090. https://doi.org/10.1016/j.apradiso.2020.109090.10.1016/j.apradiso.2020.10909032250764Search in Google Scholar

23. Ambrosino, F., Thinová, L., Briestenský, M., Giudicepietro, F., Roca, V., & Sabbarese, C. (2020). Analysis of geophysical and meteorological parameters influencing 222Rn activity concentration in Mladeč caves (Czech Republic) and in soils of Phlegrean Fields caldera (Italy). Appl. Radiat. Isot., 160, 109140. https://doi.org/10.1016/j.apradiso.2020.109140.10.1016/j.apradiso.2020.10914032351231Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo