Open Access

Analysis and Graphical Evaluation of Pressure Changes in Pneumatic Circuits for Industrial Applications

 and   
Sep 10, 2025

Cite
Download Cover

Pandian, S., Takemura, F., Hayakawa, Y., Kawamura, S. (2002). Pressure observer-controller design for pneumatic cylinder actuators. IEEE/ASME Transactions on Mechatronics, 7 (4), 490–499. https://doi.org/10.1109/TMECH.2002.805624. PandianS. TakemuraF. HayakawaY. KawamuraS. 2002 Pressure observer-controller design for pneumatic cylinder actuators IEEE/ASME Transactions on Mechatronics 7 4 490 499 https://doi.org/10.1109/TMECH.2002.805624. Search in Google Scholar

Unger, M., Radgen, P. (2018). Energy efficiency in compressed air systems – a review of energy efficiency potentials, technological development, energy policy actions and future importance. In Proceedings of the 10th International Conference on Energy Efficiency in Motor Driven Systems. Luxembourg: Publications Office of the European Union, 207–233. ISBN 978–92–79–79364–6. https://doi.org/10.2760/345473. UngerM. RadgenP. 2018 Energy efficiency in compressed air systems – a review of energy efficiency potentials, technological development, energy policy actions and future importance In Proceedings of the 10th International Conference on Energy Efficiency in Motor Driven Systems Luxembourg: Publications Office of the European Union 207 233 ISBN 978–92–79–79364–6. https://doi.org/10.2760/345473. Search in Google Scholar

Feng, B., Liu, Z., Zhang, H., Fan, H. (2024). Research on the measurement system and remote calibration technology of a dual linear array camera. Measurement Science Review, 24 (3), 105–112. https://doi.org/10.2478/msr-2024-0015. FengB. LiuZ. ZhangH. FanH. 2024 Research on the measurement system and remote calibration technology of a dual linear array camera Measurement Science Review 24 3 105 112 https://doi.org/10.2478/msr-2024-0015. Search in Google Scholar

Borg, M., Refalo, P., Francalanza, E. (2024). Pneumatic fault monitoring and control for sustainable compressed air systems. Procedia CIRP, 122, 217–222. https://doi.org/10.1016/j.procir.2024.01.032. BorgM. RefaloP. FrancalanzaE. 2024 Pneumatic fault monitoring and control for sustainable compressed air systems Procedia CIRP 122 217 222 https://doi.org/10.1016/j.procir.2024.01.032. Search in Google Scholar

Shi, Y., Cai, M., Xu, W., Wang, Y. (2019). Methods to evaluate and measure power of pneumatic system and their applications. Chinese Journal of Mechanical Engineering, 32, 42. https://doi.org/10.1186/s10033-019-0354-6. ShiY. CaiM. XuW. WangY. 2019 Methods to evaluate and measure power of pneumatic system and their applications Chinese Journal of Mechanical Engineering 32 42 https://doi.org/10.1186/s10033-019-0354-6. Search in Google Scholar

Wang, Z., Yang, B., Ma, Q., Wang, H., Carriveau, R., Ting, D., Xiong, W. (2023). Facilitating energy monitoring and fault diagnosis of pneumatic cylinders with exergy and machine learning. International Journal of Fluid Power, 24 (4), 643–682. https://doi.org/10.13052/ijfp1439-9776.2442. WangZ. YangB. MaQ. WangH. CarriveauR. TingD. XiongW. 2023 Facilitating energy monitoring and fault diagnosis of pneumatic cylinders with exergy and machine learning International Journal of Fluid Power 24 4 643 682 https://doi.org/10.13052/ijfp1439-9776.2442. Search in Google Scholar

Abela, K., Refalo, P., Francalanza, E. (2022). Analysis of pneumatic parameters to identify leakages and faults on the demand side of a compressed air system. Cleaner Engineering and Technology, 6, 100355. https://doi.org/10.1016/j.clet.2021.100355. AbelaK. RefaloP. FrancalanzaE. 2022 Analysis of pneumatic parameters to identify leakages and faults on the demand side of a compressed air system Cleaner Engineering and Technology 6 100355 https://doi.org/10.1016/j.clet.2021.100355. Search in Google Scholar

Cagman, S., Soylu, E., Unver, U. (2022). A research on the easy-to-use energy efficiency performance indicators for energy audit and energy monitoring of industrial compressed air systems. Journal of Cleaner Production, 365, 132698. https://doi.org/10.1016/j.jclepro.2022.132698. CagmanS. SoyluE. UnverU. 2022 A research on the easy-to-use energy efficiency performance indicators for energy audit and energy monitoring of industrial compressed air systems Journal of Cleaner Production 365 132698 https://doi.org/10.1016/j.jclepro.2022.132698. Search in Google Scholar

Dindorf, R., Wos, P. (2021). Universal programmable portable measurement device for diagnostics and monitoring of industrial fluid power systems. Sensors, 21 (10), 3440. https://doi.org/10.3390/s21103440. DindorfR. WosP. 2021 Universal programmable portable measurement device for diagnostics and monitoring of industrial fluid power systems Sensors 21 10 3440 https://doi.org/10.3390/s21103440. Search in Google Scholar

Caruana, L., Refalo, P. (2018). Sustainability analysis of a compressed air system. In Engineering Sustainability & Sustainable Energy 2018 (ESSE'18) Conference. ISBN 978-99957-853-2-1. CaruanaL. RefaloP. 2018 Sustainability analysis of a compressed air system In Engineering Sustainability & Sustainable Energy 2018 (ESSE'18) Conference ISBN 978-99957-853-2-1. Search in Google Scholar

Mousavi, S., Kara, S., Kornfeld, B. (2014). Energy efficiency of compressed air systems. Procedia CIRP, 15, 313–318. https://doi.org/10.1016/j.procir.2014.06.026. MousaviS. KaraS. KornfeldB. 2014 Energy efficiency of compressed air systems Procedia CIRP 15 313 318 https://doi.org/10.1016/j.procir.2014.06.026. Search in Google Scholar

Gauchel, W., Streichert, T., Wilhelm, Y. (2020). Predictive maintenance with a minimum of sensors using pneumatic clamps as an example. In 12th International Fluid Power Conference. Technische Universität Dresden, 175–183. https://doi.org/10.25368/2020.81. GauchelW. StreichertT. WilhelmY. 2020 Predictive maintenance with a minimum of sensors using pneumatic clamps as an example In 12th International Fluid Power Conference Technische Universität Dresden 175 183 https://doi.org/10.25368/2020.81. Search in Google Scholar

Borg, M., Refalo, P., Francalanza, E. (2024). Fault condition indicators along the demand side of a sustainable compressed air system. Procedia CIRP, 126, 283–288. https://doi.org/10.1016/j.procir.2024.08.340. BorgM. RefaloP. FrancalanzaE. 2024 Fault condition indicators along the demand side of a sustainable compressed air system Procedia CIRP 126 283 288 https://doi.org/10.1016/j.procir.2024.08.340. Search in Google Scholar

Zhu, H., Wang, Z., Wang, H., Zhao, Z., Xiong, W. (2023). Leakage fault diagnosis of two parallel cylinders in pneumatic system with a minimal number of sensors. Electronics, 12 (15), 3261. https://doi.org/10.3390/electronics12153261. ZhuH. WangZ. WangH. ZhaoZ. XiongW. 2023 Leakage fault diagnosis of two parallel cylinders in pneumatic system with a minimal number of sensors Electronics 12 15 3261 https://doi.org/10.3390/electronics12153261. Search in Google Scholar

Xu, M., Wang, H., Wang, Y., Tian, H. (2023). Design and experimental study of a probe for crankshaft full-automatic measuring machine. Measurement Science Review, 23 (2), 72–79. https://doi.org/10.2478/msr-2023-0009. XuM. WangH. WangY. TianH. 2023 Design and experimental study of a probe for crankshaft full-automatic measuring machine Measurement Science Review 23 2 72 79 https://doi.org/10.2478/msr-2023-0009. Search in Google Scholar

Li, X., Kao, I. (2005). Analytical fault detection and diagnosis (fdd) for pneumatic systems in robotics and manufacturing automation. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2517–2522. https://doi.org/10.1109/IROS.2005.1545573. LiX. KaoI. 2005 Analytical fault detection and diagnosis (fdd) for pneumatic systems in robotics and manufacturing automation In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems IEEE 2517 2522 https://doi.org/10.1109/IROS.2005.1545573. Search in Google Scholar

Krejcčí, J., Babiuch, M., Babjak, J., Suder, J., Wierbica, R. (2023). Implementation of an embedded system into the internet of robotic things. Micromachines, 14 (1), 113. https://doi.org/10.3390/mi14010113. KrejcčíJ. BabiuchM. BabjakJ. SuderJ. WierbicaR. 2023 Implementation of an embedded system into the internet of robotic things Micromachines 14 1 113 https://doi.org/10.3390/mi14010113. Search in Google Scholar

Kundu, P., Cohen, I., Dowling, D. (2011). Fluid Mechanics. Academic Press, ISBN 978-0123821003. KunduP. CohenI. DowlingD. 2011 Fluid Mechanics Academic Press ISBN 978-0123821003. Search in Google Scholar

Dindorf, R., Takosoglu, J., Wos, P. (2023). Review of compressed air receiver tanks for improved energy efficiency of various pneumatic systems. Energies, 16 (10), 4153. https://doi.org/10.3390/en16104153. DindorfR. TakosogluJ. WosP. 2023 Review of compressed air receiver tanks for improved energy efficiency of various pneumatic systems Energies 16 10 4153 https://doi.org/10.3390/en16104153. Search in Google Scholar

Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing