This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License.
Pandian, S., Takemura, F., Hayakawa, Y., Kawamura, S. (2002). Pressure observer-controller design for pneumatic cylinder actuators. IEEE/ASME Transactions on Mechatronics, 7 (4), 490–499. https://doi.org/10.1109/TMECH.2002.805624.PandianS.TakemuraF.HayakawaY.KawamuraS.2002Pressure observer-controller design for pneumatic cylinder actuatorsIEEE/ASME Transactions on Mechatronics74490499https://doi.org/10.1109/TMECH.2002.805624.Search in Google Scholar
Unger, M., Radgen, P. (2018). Energy efficiency in compressed air systems – a review of energy efficiency potentials, technological development, energy policy actions and future importance. In Proceedings of the 10th International Conference on Energy Efficiency in Motor Driven Systems. Luxembourg: Publications Office of the European Union, 207–233. ISBN 978–92–79–79364–6. https://doi.org/10.2760/345473.UngerM.RadgenP.2018Energy efficiency in compressed air systems – a review of energy efficiency potentials, technological development, energy policy actions and future importanceInProceedings of the 10th International Conference on Energy Efficiency in Motor Driven SystemsLuxembourg: Publications Office of the European Union207233ISBN 978–92–79–79364–6. https://doi.org/10.2760/345473.Search in Google Scholar
Feng, B., Liu, Z., Zhang, H., Fan, H. (2024). Research on the measurement system and remote calibration technology of a dual linear array camera. Measurement Science Review, 24 (3), 105–112. https://doi.org/10.2478/msr-2024-0015.FengB.LiuZ.ZhangH.FanH.2024Research on the measurement system and remote calibration technology of a dual linear array cameraMeasurement Science Review243105112https://doi.org/10.2478/msr-2024-0015.Search in Google Scholar
Borg, M., Refalo, P., Francalanza, E. (2024). Pneumatic fault monitoring and control for sustainable compressed air systems. Procedia CIRP, 122, 217–222. https://doi.org/10.1016/j.procir.2024.01.032.BorgM.RefaloP.FrancalanzaE.2024Pneumatic fault monitoring and control for sustainable compressed air systemsProcedia CIRP122217222https://doi.org/10.1016/j.procir.2024.01.032.Search in Google Scholar
Shi, Y., Cai, M., Xu, W., Wang, Y. (2019). Methods to evaluate and measure power of pneumatic system and their applications. Chinese Journal of Mechanical Engineering, 32, 42. https://doi.org/10.1186/s10033-019-0354-6.ShiY.CaiM.XuW.WangY.2019Methods to evaluate and measure power of pneumatic system and their applicationsChinese Journal of Mechanical Engineering3242https://doi.org/10.1186/s10033-019-0354-6.Search in Google Scholar
Wang, Z., Yang, B., Ma, Q., Wang, H., Carriveau, R., Ting, D., Xiong, W. (2023). Facilitating energy monitoring and fault diagnosis of pneumatic cylinders with exergy and machine learning. International Journal of Fluid Power, 24 (4), 643–682. https://doi.org/10.13052/ijfp1439-9776.2442.WangZ.YangB.MaQ.WangH.CarriveauR.TingD.XiongW.2023Facilitating energy monitoring and fault diagnosis of pneumatic cylinders with exergy and machine learningInternational Journal of Fluid Power244643682https://doi.org/10.13052/ijfp1439-9776.2442.Search in Google Scholar
Abela, K., Refalo, P., Francalanza, E. (2022). Analysis of pneumatic parameters to identify leakages and faults on the demand side of a compressed air system. Cleaner Engineering and Technology, 6, 100355. https://doi.org/10.1016/j.clet.2021.100355.AbelaK.RefaloP.FrancalanzaE.2022Analysis of pneumatic parameters to identify leakages and faults on the demand side of a compressed air systemCleaner Engineering and Technology6100355https://doi.org/10.1016/j.clet.2021.100355.Search in Google Scholar
Cagman, S., Soylu, E., Unver, U. (2022). A research on the easy-to-use energy efficiency performance indicators for energy audit and energy monitoring of industrial compressed air systems. Journal of Cleaner Production, 365, 132698. https://doi.org/10.1016/j.jclepro.2022.132698.CagmanS.SoyluE.UnverU.2022A research on the easy-to-use energy efficiency performance indicators for energy audit and energy monitoring of industrial compressed air systemsJournal of Cleaner Production365132698https://doi.org/10.1016/j.jclepro.2022.132698.Search in Google Scholar
Dindorf, R., Wos, P. (2021). Universal programmable portable measurement device for diagnostics and monitoring of industrial fluid power systems. Sensors, 21 (10), 3440. https://doi.org/10.3390/s21103440.DindorfR.WosP.2021Universal programmable portable measurement device for diagnostics and monitoring of industrial fluid power systemsSensors21103440https://doi.org/10.3390/s21103440.Search in Google Scholar
Caruana, L., Refalo, P. (2018). Sustainability analysis of a compressed air system. In Engineering Sustainability & Sustainable Energy 2018 (ESSE'18) Conference. ISBN 978-99957-853-2-1.CaruanaL.RefaloP.2018Sustainability analysis of a compressed air systemInEngineering Sustainability & Sustainable Energy 2018 (ESSE'18) ConferenceISBN 978-99957-853-2-1.Search in Google Scholar
Mousavi, S., Kara, S., Kornfeld, B. (2014). Energy efficiency of compressed air systems. Procedia CIRP, 15, 313–318. https://doi.org/10.1016/j.procir.2014.06.026.MousaviS.KaraS.KornfeldB.2014Energy efficiency of compressed air systemsProcedia CIRP15313318https://doi.org/10.1016/j.procir.2014.06.026.Search in Google Scholar
Gauchel, W., Streichert, T., Wilhelm, Y. (2020). Predictive maintenance with a minimum of sensors using pneumatic clamps as an example. In 12th International Fluid Power Conference. Technische Universität Dresden, 175–183. https://doi.org/10.25368/2020.81.GauchelW.StreichertT.WilhelmY.2020Predictive maintenance with a minimum of sensors using pneumatic clamps as an exampleIn12th International Fluid Power ConferenceTechnische Universität Dresden175183https://doi.org/10.25368/2020.81.Search in Google Scholar
Borg, M., Refalo, P., Francalanza, E. (2024). Fault condition indicators along the demand side of a sustainable compressed air system. Procedia CIRP, 126, 283–288. https://doi.org/10.1016/j.procir.2024.08.340.BorgM.RefaloP.FrancalanzaE.2024Fault condition indicators along the demand side of a sustainable compressed air systemProcedia CIRP126283288https://doi.org/10.1016/j.procir.2024.08.340.Search in Google Scholar
Zhu, H., Wang, Z., Wang, H., Zhao, Z., Xiong, W. (2023). Leakage fault diagnosis of two parallel cylinders in pneumatic system with a minimal number of sensors. Electronics, 12 (15), 3261. https://doi.org/10.3390/electronics12153261.ZhuH.WangZ.WangH.ZhaoZ.XiongW.2023Leakage fault diagnosis of two parallel cylinders in pneumatic system with a minimal number of sensorsElectronics12153261https://doi.org/10.3390/electronics12153261.Search in Google Scholar
Xu, M., Wang, H., Wang, Y., Tian, H. (2023). Design and experimental study of a probe for crankshaft full-automatic measuring machine. Measurement Science Review, 23 (2), 72–79. https://doi.org/10.2478/msr-2023-0009.XuM.WangH.WangY.TianH.2023Design and experimental study of a probe for crankshaft full-automatic measuring machineMeasurement Science Review2327279https://doi.org/10.2478/msr-2023-0009.Search in Google Scholar
Li, X., Kao, I. (2005). Analytical fault detection and diagnosis (fdd) for pneumatic systems in robotics and manufacturing automation. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2517–2522. https://doi.org/10.1109/IROS.2005.1545573.LiX.KaoI.2005Analytical fault detection and diagnosis (fdd) for pneumatic systems in robotics and manufacturing automationIn2005 IEEE/RSJ International Conference on Intelligent Robots and SystemsIEEE25172522https://doi.org/10.1109/IROS.2005.1545573.Search in Google Scholar
Krejcčí, J., Babiuch, M., Babjak, J., Suder, J., Wierbica, R. (2023). Implementation of an embedded system into the internet of robotic things. Micromachines, 14 (1), 113. https://doi.org/10.3390/mi14010113.KrejcčíJ.BabiuchM.BabjakJ.SuderJ.WierbicaR.2023Implementation of an embedded system into the internet of robotic thingsMicromachines141113https://doi.org/10.3390/mi14010113.Search in Google Scholar
Kundu, P., Cohen, I., Dowling, D. (2011). Fluid Mechanics. Academic Press, ISBN 978-0123821003.KunduP.CohenI.DowlingD.2011Fluid MechanicsAcademic PressISBN 978-0123821003.Search in Google Scholar
Dindorf, R., Takosoglu, J., Wos, P. (2023). Review of compressed air receiver tanks for improved energy efficiency of various pneumatic systems. Energies, 16 (10), 4153. https://doi.org/10.3390/en16104153.DindorfR.TakosogluJ.WosP.2023Review of compressed air receiver tanks for improved energy efficiency of various pneumatic systemsEnergies16104153https://doi.org/10.3390/en16104153.Search in Google Scholar