Key Laboratory of Ultrafast Photoelectric Diagnostic Technology, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of SciencesXi’an, China
University of Chinese Academy of SciencesBeijing, China
Key Laboratory of Ultrafast Photoelectric Diagnostic Technology, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of SciencesXi’an, China
Key Laboratory of Ultrafast Photoelectric Diagnostic Technology, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of SciencesXi’an, China
University of Chinese Academy of SciencesBeijing, China
Key Laboratory of Ultrafast Photoelectric Diagnostic Technology, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of SciencesXi’an, China
Key Laboratory of Ultrafast Photoelectric Diagnostic Technology, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of SciencesXi’an, China
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Huang, X., Lamperstorfer, A. S., Sming Tsai, Y.-L., Xu, M., Yuan, Q., Chang, J., Dong, Y.-W., Hu, B.-L., Lü, J.-G., Wang, L., Wu, B.-B., Zhang, S.-N. (2016). Perspective of monochromatic gamma-ray line detection with the high energy cosmic-radiation detection (HERD) facility onboard China’s space station. Astroparticle Physics, 78, 35-42. https://doi.org/10.1016/j.astropartphys.2016.02.003Search in Google Scholar
Xu, M., HERD collaboration. (2016). The high energy cosmic radiation facility onboard China’s space station. Nuclear and Particle Physics Proceedings, 279-281, 161-165. https://doi.org/10.1016/j.nuclphysbps.2016.10.023Search in Google Scholar
Betti, P., Adriani, O., Antonelli, M., Bai, Y., Bai, X., Bao, T. et al. (2022). Photodiode read-out system for the calorimeter of the HERD experiment. Instruments, 6 (3), 33. https://doi.org/10.3390/instruments6030033Search in Google Scholar
Guest, A. J. (1971). A computer model of channel multiplier plate performance. Acta Electronica, 14 (1), 79-97. https://psec.uchicago.edu/Papers/Guest.pdfSearch in Google Scholar
Wiens, R. C., Maurice, S., Robinson, S. H., Nelson, A. E., Cais, P., Bernardi, P. et al. (2021). The SuperCam instrument suite on the NASA Mars 2020 Rover: Body unit and combined system tests. Space Science Reviews, 217 (4). https://doi.org/10.1007/s11214-020-00777-5Search in Google Scholar
Chen, L., Wang, X., Tian, J., Zhao, T., Liu, C., Liu, H., Wei, Y., Sai, X., Wang, X., Sun, J., Si, S., Chen, P., Tian, L., Hui, D., Guo, L. (2017). The gain and time characteristics of microchannel plates in various channel geometries. IEEE Transactions on Nuclear Science, 64 (4), 1080-1086. https://doi.org/10.1109/TNS.2017.2676010Search in Google Scholar
Wehmeijer, J., van Geest, B. (2010). Image intensification. Nature Photonics, 4 (3), 152-153. https://doi.org/10.1038/nphoton.2010.21Search in Google Scholar
Shi, P., Jia, J., Zhang, Y., Zhang, B., Huang, Y., Jiao, P., Huang, K., Feng, Y., Wang, S. (2020). Advances in theoretical models and simulation of electron gain in microchannel plates. In Second Target Recognition and Artificial Intelligence Summit Forum. SPIE 11427, 1142736. https://doi.org/10.1117/12.2552917Search in Google Scholar
Sanctorum, J. G., Adriaens, D., Dirckx, J. J. J., Sijbers, J., van Ginneken, C., Aerts, P., Van Wassenbergh, S. (2019). Methods for characterization and optimisation of measuring performance of stereoscopic x-ray systems with image intensifiers. Measurement Science and Technology, 30 (10), 105701. https://doi.org/10.1088/1361-6501/ab23e7Search in Google Scholar
Nittoh, K., Konagai, C., Noji, T., Miyabe, K. (2009). New feature of the neutron color image intensifier. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 605 (1-2), 107-110. https://doi.org/10.1016/j.nima.2009.01.136Search in Google Scholar
Dolan, K. W. (1978). Preliminary studies of microchannel plate photomultiplier tube neutron detectors for flight test applications. Sandia Laboratories Livermore, SAND78-8266. https://www.osti.gov/servlets/purl/6207249Search in Google Scholar
Pan, J., Lv, J., Zhang, Z., Sun, J., Su, D. (2010). Ion feedback suppression for microchannel plate applied to third generation image intensifiers. Chinese Journal of Electronics, 19 (4), 757-762. https://doi.org/10.23919/CJE.2010.10168771Search in Google Scholar
Zhu, X., Guo, J., Cao, W., Liu, L., Zhang, G., Sun, X., Zhao, W., Si, J. (2020). Theoretical and experimental investigation of secondary electron emission characteristics of ALD-ZnO conductive films. Journal of Applied Physics, 128, 065102. https://doi.org/10.1063/5.0014590Search in Google Scholar
Gemer, A. J., Sternovsky, Z., James, D., Horanyi, M. (2020). The effect of high-velocity dust particle impacts on microchannel plate (MCP) detectors. Planetary and Space Science, 183, 104628. https://doi.org/10.1016/j.pss.2018.12.011Search in Google Scholar
Hemphill, R., Edelstein, J. (2003). Chemical method to increase extreme ultraviolet microchannel-plate quantum efficiency. II. Analysis and optimization. Applied Optics, 42 (13), 2251-2256. https://doi.org/10.1364/AO.42.002251Search in Google Scholar
Xie, Y., Zhang, Y., Wang, X., Sun, X. (2017). Research on the gain saturation effect of an image intensifier based on microchannel plate. Infrared and Laser Engineering, 146 (10), 1003005. https://doi.org/10.3788/irla201746.1003005Search in Google Scholar
Kobayashi, H., Hondo, T., Toyoda, M. (2021). Evaluation of microchannel plate gain drops caused by high ion fluxes in time-of-flight mass spectrometry: A novel evaluation method using a multi-turn time-of-flight mass spectrometer. Journal of Mass Spectrometry, 56 (3), e4706. https://doi.org/10.1002/jms.4706Search in Google Scholar
Kobayashi, H., Hondo, T., Kanematsu, Y., Suyama, M., Toyoda, M. (2023). Evaluation of transient gain-drop and following recovery property on microchannel plate: Comparison between two evaluation methods. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1053, 168355. https://doi.org/10.1016/j.nima.2023.168355Search in Google Scholar
Ertley, C., Siegmund, O., Cremer, T., Craven, C., Minot, M., Elam, J., Mane, A. (2018). Performance studies of atomic layer deposited microchannel plate electron multipliers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 912, 75-77. https://doi.org/10.1016/j.nima.2017.10.050Search in Google Scholar
Marckwordt, M., Lampton, M. (2000). Frictional properties of microchannel plates and common detector materials. Review of Scientific Instruments, 71 (4), 1906-1908. https://doi.org/10.1063/1.1150561Search in Google Scholar
Marckwordt, M. (2003). Development of a spring ring for microchannel plate stack fastening in the cosmic hot interstellar plasma spectrometer detector. Review of Scientific Instruments, 74 (1), 212-217. https://doi.org/10.1063/1.1527204Search in Google Scholar
Zhao, R., Huang, Y., Wang, J., Sun, Y., Huang, K., Zhou, Y., Wang, Y., Fu, Y. (2019). Image-spherizing-based planeness detecting method for a micro-channel plate. Applied Optics, 58 (3), 554-560. https://doi.org/10.1364/AO.58.000554Search in Google Scholar
Slot, T., O’Donnell, W. J. (1971) Effective elastic constants for thick perforated plates with square and triangular penetration patterns. Journal of Engineering for Industry, 93 (4), 935-942. https://doi.org/10.1115/1.3428087Search in Google Scholar
Yang, X., Zhang, C., Ling, Z., Jin, G., Li, L., Yuan, W., Zhang, S. (2018). The finite element analysis modeling of micro pore optic plate. In Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray. SPIE 10699, 106993Z. https://doi.org/10.1117/12.2312382Search in Google Scholar
Baik, S. C., Oh, K. H., Lee, D. N. (1996). Analysis of the deformation of a perforated sheet under uniaxial tension. Journal of Materials Processing Technology, 58 (2-3), 139-144. https://doi.org/10.1016/0924-0136(95)02096-9Search in Google Scholar