Accesso libero

Equivalent Mechanical Model of a Microchannel Plate

, , , , , , , , , ,  e   
30 ott 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Huang, X., Lamperstorfer, A. S., Sming Tsai, Y.-L., Xu, M., Yuan, Q., Chang, J., Dong, Y.-W., Hu, B.-L., Lü, J.-G., Wang, L., Wu, B.-B., Zhang, S.-N. (2016). Perspective of monochromatic gamma-ray line detection with the high energy cosmic-radiation detection (HERD) facility onboard China’s space station. Astroparticle Physics, 78, 35-42. https://doi.org/10.1016/j.astropartphys.2016.02.003 Search in Google Scholar

Xu, M., HERD collaboration. (2016). The high energy cosmic radiation facility onboard China’s space station. Nuclear and Particle Physics Proceedings, 279-281, 161-165. https://doi.org/10.1016/j.nuclphysbps.2016.10.023 Search in Google Scholar

Betti, P., Adriani, O., Antonelli, M., Bai, Y., Bai, X., Bao, T. et al. (2022). Photodiode read-out system for the calorimeter of the HERD experiment. Instruments, 6 (3), 33. https://doi.org/10.3390/instruments6030033 Search in Google Scholar

Guest, A. J. (1971). A computer model of channel multiplier plate performance. Acta Electronica, 14 (1), 79-97. https://psec.uchicago.edu/Papers/Guest.pdf Search in Google Scholar

Wiens, R. C., Maurice, S., Robinson, S. H., Nelson, A. E., Cais, P., Bernardi, P. et al. (2021). The SuperCam instrument suite on the NASA Mars 2020 Rover: Body unit and combined system tests. Space Science Reviews, 217 (4). https://doi.org/10.1007/s11214-020-00777-5 Search in Google Scholar

Chen, L., Wang, X., Tian, J., Zhao, T., Liu, C., Liu, H., Wei, Y., Sai, X., Wang, X., Sun, J., Si, S., Chen, P., Tian, L., Hui, D., Guo, L. (2017). The gain and time characteristics of microchannel plates in various channel geometries. IEEE Transactions on Nuclear Science, 64 (4), 1080-1086. https://doi.org/10.1109/TNS.2017.2676010 Search in Google Scholar

Wehmeijer, J., van Geest, B. (2010). Image intensification. Nature Photonics, 4 (3), 152-153. https://doi.org/10.1038/nphoton.2010.21 Search in Google Scholar

Shi, P., Jia, J., Zhang, Y., Zhang, B., Huang, Y., Jiao, P., Huang, K., Feng, Y., Wang, S. (2020). Advances in theoretical models and simulation of electron gain in microchannel plates. In Second Target Recognition and Artificial Intelligence Summit Forum. SPIE 11427, 1142736. https://doi.org/10.1117/12.2552917 Search in Google Scholar

Sanctorum, J. G., Adriaens, D., Dirckx, J. J. J., Sijbers, J., van Ginneken, C., Aerts, P., Van Wassenbergh, S. (2019). Methods for characterization and optimisation of measuring performance of stereoscopic x-ray systems with image intensifiers. Measurement Science and Technology, 30 (10), 105701. https://doi.org/10.1088/1361-6501/ab23e7 Search in Google Scholar

Nittoh, K., Konagai, C., Noji, T., Miyabe, K. (2009). New feature of the neutron color image intensifier. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 605 (1-2), 107-110. https://doi.org/10.1016/j.nima.2009.01.136 Search in Google Scholar

Dolan, K. W. (1978). Preliminary studies of microchannel plate photomultiplier tube neutron detectors for flight test applications. Sandia Laboratories Livermore, SAND78-8266. https://www.osti.gov/servlets/purl/6207249 Search in Google Scholar

Pan, J., Lv, J., Zhang, Z., Sun, J., Su, D. (2010). Ion feedback suppression for microchannel plate applied to third generation image intensifiers. Chinese Journal of Electronics, 19 (4), 757-762. https://doi.org/10.23919/CJE.2010.10168771 Search in Google Scholar

Zhu, X., Guo, J., Cao, W., Liu, L., Zhang, G., Sun, X., Zhao, W., Si, J. (2020). Theoretical and experimental investigation of secondary electron emission characteristics of ALD-ZnO conductive films. Journal of Applied Physics, 128, 065102. https://doi.org/10.1063/5.0014590 Search in Google Scholar

Gemer, A. J., Sternovsky, Z., James, D., Horanyi, M. (2020). The effect of high-velocity dust particle impacts on microchannel plate (MCP) detectors. Planetary and Space Science, 183, 104628. https://doi.org/10.1016/j.pss.2018.12.011 Search in Google Scholar

Hemphill, R., Edelstein, J. (2003). Chemical method to increase extreme ultraviolet microchannel-plate quantum efficiency. II. Analysis and optimization. Applied Optics, 42 (13), 2251-2256. https://doi.org/10.1364/AO.42.002251 Search in Google Scholar

Xie, Y., Zhang, Y., Wang, X., Sun, X. (2017). Research on the gain saturation effect of an image intensifier based on microchannel plate. Infrared and Laser Engineering, 146 (10), 1003005. https://doi.org/10.3788/irla201746.1003005 Search in Google Scholar

Kobayashi, H., Hondo, T., Toyoda, M. (2021). Evaluation of microchannel plate gain drops caused by high ion fluxes in time-of-flight mass spectrometry: A novel evaluation method using a multi-turn time-of-flight mass spectrometer. Journal of Mass Spectrometry, 56 (3), e4706. https://doi.org/10.1002/jms.4706 Search in Google Scholar

Kobayashi, H., Hondo, T., Kanematsu, Y., Suyama, M., Toyoda, M. (2023). Evaluation of transient gain-drop and following recovery property on microchannel plate: Comparison between two evaluation methods. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1053, 168355. https://doi.org/10.1016/j.nima.2023.168355 Search in Google Scholar

Ertley, C., Siegmund, O., Cremer, T., Craven, C., Minot, M., Elam, J., Mane, A. (2018). Performance studies of atomic layer deposited microchannel plate electron multipliers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 912, 75-77. https://doi.org/10.1016/j.nima.2017.10.050 Search in Google Scholar

Marckwordt, M., Lampton, M. (2000). Frictional properties of microchannel plates and common detector materials. Review of Scientific Instruments, 71 (4), 1906-1908. https://doi.org/10.1063/1.1150561 Search in Google Scholar

Marckwordt, M. (2003). Development of a spring ring for microchannel plate stack fastening in the cosmic hot interstellar plasma spectrometer detector. Review of Scientific Instruments, 74 (1), 212-217. https://doi.org/10.1063/1.1527204 Search in Google Scholar

Zhao, R., Huang, Y., Wang, J., Sun, Y., Huang, K., Zhou, Y., Wang, Y., Fu, Y. (2019). Image-spherizing-based planeness detecting method for a micro-channel plate. Applied Optics, 58 (3), 554-560. https://doi.org/10.1364/AO.58.000554 Search in Google Scholar

Slot, T., O’Donnell, W. J. (1971) Effective elastic constants for thick perforated plates with square and triangular penetration patterns. Journal of Engineering for Industry, 93 (4), 935-942. https://doi.org/10.1115/1.3428087 Search in Google Scholar

Yang, X., Zhang, C., Ling, Z., Jin, G., Li, L., Yuan, W., Zhang, S. (2018). The finite element analysis modeling of micro pore optic plate. In Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray. SPIE 10699, 106993Z. https://doi.org/10.1117/12.2312382 Search in Google Scholar

Baik, S. C., Oh, K. H., Lee, D. N. (1996). Analysis of the deformation of a perforated sheet under uniaxial tension. Journal of Materials Processing Technology, 58 (2-3), 139-144. https://doi.org/10.1016/0924-0136(95)02096-9 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Ingegneria, Elettrotecnica, Ingegneria dell'automazione, metrologia e collaudo