Open Access

Calibration of NMR Receiver using Spectrometer Characteristics


[1] Andris, P., Emery, E.F., Frollo, I. (2019). Analysis of NMR spectrometer receiver noise figure. Mathematical Problems in Engineering, 2019, 1083706. Search in Google Scholar

[2] Schiek, B., Siweris, H.J. (1990). Rauschen in Hochfrequenzschaltungen [Noises in RF Circuits]. Hüthig, ISBN 978-3778520079. (in German) Search in Google Scholar

[3] Žalud, V., Kulešov, V.N. (1980). Polovodičové obvody s malým šumem [Semiconductor Circuits with Low Noise]. Prague, Czech Republic: SNTL, ISBN 04-528-80. (in Czech) Search in Google Scholar

[4] Hoult, D.I., Richards, R.E. (1976). The signal-to-noise ratio of the nuclear magnetic resonance experiment. Journal of Magnetic Resonance, 24 (1), 71-85. Search in Google Scholar

[5] Hoult, D.I., Lauterbur, P.C. (1979). The sensitivity of the zeugmatographic experiment involving human samples. Journal of Magnetic Resonance, 34 (2), 425-433. Search in Google Scholar

[6] Raad, A., Darrasse, L. (1992). Optimization of NMR bandwidth by inductive coupling. Magnetic Resonance Imaging, 10 (1), 55-65. Search in Google Scholar

[7] Décorps, M., Blondet, P., Reutenauer, H., Albrand, J.P., Remy, C. (1985). An inductively coupled, series-tuned NMR probe. Journal of Magnetic Resonance, 65 (1), 100-109. Search in Google Scholar

[8] Vergara, Gomez, T.S., Dubois, M., Glybovski, S., Larrat, B., De Rosny, J., Rockstuhl, C., Bernard, M., Abdeddaim, R., Enoch, S., Kober, F. (2019). Wireless coils based on resonant and nonresonant coupled-wire structure for small animal multinuclear imaging. NMR in Biomedicine, 32 (5), e4079. Search in Google Scholar

[9] Qian, Ch., Duan, Q., Dodd, S., Koretsky, A., Murphy-Boesch, J. (2016). Sensitivity enhancement of an inductively coupled local detector using a HEMT-based current amplifier. Magnetic Resonance in Medicine, 75 (6), 2573-2578. Search in Google Scholar

[10] Weis, J., Ericsson, A., Hemmingsson, A. (1999). Chemical shift artifact-free microscopy: Spectroscopic microimaging of the human skin. Magnetic Resonance in Medicine, 41 (5), 904-908.;2-4. Search in Google Scholar

[11] Marcon, P., Bartusek, K., Dokoupil, Z., Gescheidtova, E. (2012). Diffusion MRI: Mitigation of magnetic field inhomogeneities. Measurement Science Review, 12 (5), 205-212. Search in Google Scholar

[12] Bartusek, K., Dokoupil, Z., Gescheidtova, E. (2007). Mapping of magnetic field around small coil using the magnetic resonance method. Measurement Science and Technology, 18 (7), 2223-2230. Search in Google Scholar

[13] Nespor, D., Bartusek, K., Dokoupil, Z. (2014). Comparing saddle, slotted-tube and parallel-plate coils for Magnetic Resonance Imaging. Measurement Science Review, 14 (3), 171-176. Search in Google Scholar

[14] Latta, P., Gruwel, M.L., Volotovskyy, V., Weber, M.H., Tomanek, B. (2007). Simple phase method for measurement of magnetic field gradient waveforms. Magnetic Resonance Imaging, 25 (9), 1272-1276. Search in Google Scholar

[15] Latta, P., Gruwel, M.L., Volotovskyy, V., Weber, M.H., Tomanek, B. (2008). Single-point imaging with a variable phase encoding interval. Magnetic Resonance Imaging, 26 (1), 109-116. Search in Google Scholar

[16] Wimmer, G., Witkovský, V., Duby, T. (2000). Proper rounding of the measurement results under normality assumptions. Measurement Science and Technology, 11 (12), 1659-1665. Search in Google Scholar

[17] Witkovsky, V., Frollo, I. (2020). Measurement science is the science of sciences - there is no science without measurement. Measurement Science Review, 20 (1), 1-5. Search in Google Scholar

Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing