1. bookVolume 21 (2021): Issue 1 (February 2021)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Signal Smoothing with Time-Space Fractional Order Model

Published Online: 30 Mar 2021
Volume & Issue: Volume 21 (2021) - Issue 1 (February 2021)
Page range: 25 - 32
Received: 30 Sep 2020
Accepted: 09 Feb 2021
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

The time-space fractional-order model (TSFOM) is a generation of the classical diffusion model which is an excellent smoothing method. In this paper, the fractional-order derivative in the model is found to have good performance for peak-preserving. To check the validity and performance of the model, some noisy signals are smoothed by some commonly used smoothing methods and results are compared with those of the proposed model. The comparison result shows that the proposed method outperforms the classical nonlinear diffusion model and some commonly used smoothing methods.

Keywords

[1] Mathieu, B., Melchior, P., Oustaloup, A., Ceyral, C. (2003). Fractional differentiation for edge detection. Signal Processing, 83 (11), 2421-2432.10.1016/S0165-1684(03)00194-4 Search in Google Scholar

[2] Cuesta, E., Kirane, M., Malik, S.A. (2012). Image structure preserving denoising using generalized fractional time integrals. Signal Processing, 92 (2), 553-563.10.1016/j.sigpro.2011.09.001 Search in Google Scholar

[3] Magin, R., Ortigueira, M.D., Podlubny, I., Trujillo, J. (2011). On the fractional signals and systems. Signal Processing, 91 (3), 350-371.10.1016/j.sigpro.2010.08.003 Search in Google Scholar

[4] Li, Y.L., Ding, Y.Q., Li, T. (2016). Nonlinear diffusion filtering for peak-preserving smoothing of a spectrum signal. Chemometrics and Intelligent Laboratory Systems, 156, 157-165.10.1016/j.chemolab.2016.06.007 Search in Google Scholar

[5] Witkin, A.P. (1983). Scale-space filtering. In Proceedings of the Eighth International Joint Conference on Artificial Intelligence, Volume 2. Morgan Kaufmann Publishers, 1019-1022. Search in Google Scholar

[6] Perona, P., Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629-639.10.1109/34.56205 Search in Google Scholar

[7] Alvarez, L., Lions, P.L., Morel, J. (1992). Image selective smoothing and edge detection by nonlinear diffusion. II. SIAM Journal on Numerical Analysis, 29 (3), 845-866.10.1137/0729052 Search in Google Scholar

[8] Anagaw, A.Y., Sacchi, M.D. (2012). Edge-preserving seismic imaging using the total variation method. Journal of Geophysics and Engineering, 9, 138-146.10.1088/1742-2132/9/2/138 Search in Google Scholar

[9] Barbu, T. (2014). Robust anisotropic diffusion scheme for image noise removal. Procedia Computer Science, 35, 522-530.10.1016/j.procs.2014.08.133 Search in Google Scholar

[10] Barbu, T. (2015). Nonlinear PDE model for image restoration using second-order hyperbolic equations. Numerical Functional Analysis and Optimization, 36, 1375-1387.10.1080/01630563.2015.1066388 Search in Google Scholar

[11] Droske, M., Bertozzi, A.L. (2010). Higher-order feature-preserving geometric regularization. SIAM Journal on Imaging Sciences, 3, 21-51.10.1137/090751694 Search in Google Scholar

[12] Gerig, G., Kubler, O., Kikinis, R., Jolesz, F.A. (1992). Nonlinear anisotropic filtering of MRI data. IEEE Transactions on Medical Imaging, 11, 221-232.10.1109/42.14164618218376 Search in Google Scholar

[13] Liang, Z., Liu, W., Yao, R. (2016). Contrast enhancement by nonlinear diffusion filtering. IEEE Transactions on Image Processing, 25, 673-686.10.1109/TIP.2015.250740526685234 Search in Google Scholar

[14] Oussous, M.A., Alaa, N., Khouya, Y.A. (2014). Anisotropic and nonlinear diffusion applied to image enhancement and edge detection. Journal of Computer Applications in Technology, 49, 122-133.10.1504/IJCAT.2014.060523 Search in Google Scholar

[15] Yu, J., Wang, Y. (2011). Image noise reduction based on anisotropic diffusion: A survey. Journal of Electronic Measurement and Instrument, 25, 105-116.10.3724/SP.J.1187.2011.00105 Search in Google Scholar

[16] Michelgonzalez, E., Cho, M.H., Lee, S.Y. (2011). Geometric nonlinear diffusion filter and its application to X-ray imaging. Biomedical Engineering Online, 10, 47-47.10.1186/1475-925X-10-47312164321639933 Search in Google Scholar

[17] Ma, W., You, Y., Kaveh, M. (2009). Image restoration regularized by a fourth order PDE. Proceedings of SPIE, 724509. Search in Google Scholar

[18] You, Y., Kaveh, M. (2000). Fourth-order partial differential equations for noise removal. IEEE Transactions on Image Processing, 9, 1723-1730.10.1109/83.86918418262911 Search in Google Scholar

[19] Weickert, J. (1997). A review of nonlinear diffusion filtering. In Scale-Space Theory in Computer Vision. LNCS 1252, 1-28. Search in Google Scholar

[20] Youssef, K., Jarenwattananon, N.N., Bouchard, L. (2015). Feature-preserving noise removal. IEEE Transactions on Medical Imaging, 34, 1822-1829.10.1109/TMI.2015.240926525769149 Search in Google Scholar

[21] Qiu, Z., Yang, L., Lu, W. (2011). A new featurepreserving nonlinear anisotropic diffusion method for image denoising. In BMVC 2011: The 22nd British Machine Vision Conference. BMVA, 1-11. Search in Google Scholar

[22] Li, Y., Jiang, M. (2018). Spatial-fractional order diffusion filtering. Journal of Mathematical Chemistry, 56, 257-267.10.1007/s10910-017-0795-z Search in Google Scholar

[23] Zhou, Q., Gao, J., Wang, Z., Li, K. (2016). Adaptive variable time fractional anisotropic diffusion filtering for seismic data noise attenuation. IEEE Transactions on Geoscience and Remote Sensing, 54, 1905-1917.10.1109/TGRS.2015.2490158 Search in Google Scholar

[24] Li, Y., Liu, F., Turner, I.W., Li, T. (2018). Timefractional diffusion equation for signal smoothing. Applied Mathematics and Computation, 326, 108-116.10.1016/j.amc.2018.01.007 Search in Google Scholar

[25] Cuesta, E., Kirane, M., Malik, S.A. (2012). Image structure preserving denoising using generalized fractional time integrals. Signal Processing, 92, 553-563.10.1016/j.sigpro.2011.09.001 Search in Google Scholar

[26] Bai, J., Feng, X. (2007). Fractional-order anisotropic diffusion for image denoising. IEEE Transactions on Image Processing, 16, 2492-2502.10.1109/TIP.2007.904971 Search in Google Scholar

[27] Janev, M., Pilipovic, S., Atanackovic, T.M., Obradovic, R., Ralevic, N.M. (2011). Fully fractional anisotropic diffusion for image denoising. Mathematical and Computer Modelling, 54, 729-741.10.1016/j.mcm.2011.03.017 Search in Google Scholar

[28] Meerschaert, M.M., Benson, D.A., Scheffler, H.-P., Baeumer, B. (2002). Stochastic solution of space–time fractional diffusion equations. Physical Review E, 65, 1103-1106.10.1103/PhysRevE.65.04110312005802 Search in Google Scholar

[29] Feng, L.B., Zhuang, P., Liu, F., Turner, I., Gu, Y.T. (2016). Finite element method for space-time fractional diffusion equation. Numerical Algorithms, 72, 749-767.10.1007/s11075-015-0065-8 Search in Google Scholar

[30] Chen, Z.Q., Meerschaert, M.M., Nane, E. (2012). Space-time fractional diffusion on bounded domains. Journal of Mathematical Analysis and Applications, 393 (2), 479-488.10.1016/j.jmaa.2012.04.032 Search in Google Scholar

[31] Azerad, P., Bouharguane, A., Crouzet, J. (2012). Simultaneous denoising and enhancement of signals by a fractal conservation law. Communications in Nonlinear Science and Numerical Simulation, 17 (2), 867-881.10.1016/j.cnsns.2011.07.001 Search in Google Scholar

[32] Chan, R.H., Lanza, A., Morigi, S., Sgallari, F. (2013). An adaptive strategy for the restoration of textured images using fractional order regularization. Numerical Mathematics: Theory, Methods and Applications, 6, 276-296.10.4208/nmtma.2013.mssvm15 Search in Google Scholar

[33] Savitzky, A., Golay, M.J.E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36 (8) 1627-1639.10.1021/ac60214a047 Search in Google Scholar

[34] Krishnan, S.R., Seelamantula, C.S. (2013). On the selection of optimum Savitzky-Golay filters. IEEE Transactions on Signal Processing, 61 (2) 380-391.10.1109/TSP.2012.2225055 Search in Google Scholar

[35] Eilers, P.H.C. (2003). A perfect smoother. Analytical Chemistry, 75, 3631-3636.10.1021/ac034173t14570219 Search in Google Scholar

[36] Stickel, J.J. (2010). Data smoothing and numerical differentiation by a regularization method. Computers & Chemical Engineering, 34, 467-475.10.1016/j.compchemeng.2009.10.007 Search in Google Scholar

[37] Yandell, B.S. (1989). Spline smoothing and nonparametric regression. Technometrics, 31, 379-380.10.1080/00401706.1989.10488561 Search in Google Scholar

[38] Liu, B., Sera, Y., Matsubara, N., Otsuka, K., Terabe, S. (2003). Signal denoising and baseline correction by discrete wavelet transform for microchip capillary electrophoresis. Electrophoresis, 24 (18), 3260-3265.10.1002/elps.20030554814518054 Search in Google Scholar

[39] Alsberg, B.K., Woodward, A.M., Winson, M.K., Rowland, J.J., Kell, D.B. (1997). Wavelet denoising of infrared spectra. Analyst, 122, 645-652.10.1039/a608255f Search in Google Scholar

[40] Yang, Q., Turner, I., Liu, F., Ilic, M. (2011). Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM Journal on Scientific Computing, 33, 1159-1180.10.1137/100800634 Search in Google Scholar

[41] Momani, S., Odibat, Z. (2008). Numerical solutions of the space-time fractional advection-dispersion equation. Numerical Methods for Partial Differential Equations, 24 (6), 1416-1429.10.1002/num.20324 Search in Google Scholar

[42] Guan, Q., Gunzburger, M. (2015). θ schemes for finite element discretization of the space-time fractional diffusion equations. Journal of Computational and Applied Mathematics, 288, 264-273.10.1016/j.cam.2015.04.032 Search in Google Scholar

[43] Zhao, J., Xiao, J., Xu, Y. (2013). A finite element method for the multiterm time-space Riesz fractional advection-diffusion equations in finite domain. Abstract and Applied Analysis, 2013, 1-15.10.1155/2013/868035 Search in Google Scholar

[44] Latifizadeh, H. (2010). Analytical solution of linear and non-linear space-time fractional reaction-diffusion equations. International Journal of Chemical Reactor Engineering, 8 (1). Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo