Open Access

Additive manufacturing with geopolymer foams: A critical review of current progress

, ,  and   
Mar 31, 2025

Cite
Download Cover

Chen, C., Xu, R., Tong, D., Qin, X., Cheng, J., Liu, J., et al., A striking growth of CO2 emissions from the global cement industry driven by new facilities in emerging countries, Environ. Res. Lett., 2022, 17(4): 044007. 10.1088/1748-9326/ac48b5 Chen C. Xu R. Tong D. Qin X. Cheng J. Liu J. A striking growth of CO2 emissions from the global cement industry driven by new facilities in emerging countries, Environ. Res. Lett. 2022 17 4 044007 10.1088/1748-9326/ac48b5 Open DOI

He, Z., Zhu, X., Wang, J., Mu, M., Wang, Y., Comparison of CO2 emissions from OPC and recycled cement production, Constr. Build. Mater., 2019, 211: 965–973. 10.1016/j.conbuildmat.2019.03.289 He Z. Zhu X. Wang J. Mu M. Wang Y. Comparison of CO2 emissions from OPC and recycled cement production Constr. Build. Mater. 2019 211 965 973 10.1016/j.conbuildmat.2019.03.289 Open DOI

Zhang, Z., Provis, J.L., Reid, A., Wang, H., Geopolymer foam concrete: An emerging material for sustainable construction, Constr. Build. Mater., 2014, 56: 113–127. 10.1016/j.conbuildmat.2014.01.081 Zhang Z. Provis J.L. Reid A. Wang H. Geopolymer foam concrete: An emerging material for sustainable construction Constr. Build. Mater. 2014 56 113 127 10.1016/j.conbuildmat.2014.01.081 Open DOI

Alves, L.A., Nogueira, A., Vazquez, E., De Barros, S., A bibliographic historical analysis on geopolymer as a substitute for Portland cement, KEM, 2020, 834: 127–131. 10.4028/www.scientific.net/KEM.834.127 Alves L.A. Nogueira A. Vazquez, E. De Barros S. A bibliographic historical analysis on geopolymer as a substitute for Portland cement KEM 2020 834 127 131 10.4028/www.scientific.net/KEM.834.127 Open DOI

Davidovits, J., Geopolymers and geopolymeric materials, J. Therm. Anal., 1989, 35(2): 429–441. 10.1007/BF01904446 Davidovits J. Geopolymers and geopolymeric materials J. Therm. Anal. 1989 35 2 429 441 10.1007/BF01904446 Open DOI

Davidovits, J., Geopolymer cement a review, published in geopolymer science and technics, Tech. Pap., 2013, 21: 1–11 Davidovits J. Geopolymer cement a review, published in geopolymer science and technics Tech. Pap. 2013 21 1 11 Search in Google Scholar

Aslan, S., Erkan, İ.H., The effects of fly ash, blast furnace slag, and limestone powder on the physical and mechanical properties of geopolymer mortar, Appl. Sci., 2024, 14(2): 553. 10.3390/app14020553 Aslan S. Erkan İ.H. The effects of fly ash, blast furnace slag, and limestone powder on the physical and mechanical properties of geopolymer mortar Appl. Sci. 2024 14 2 553 10.3390/app14020553 Open DOI

Zhang, H.Y., Kodur, V., Qi, S.L., Cao, L., Wu, B., Development of metakaolin–fly ash based geopolymers for fire resistance applications, Constr. Build. Mater., 2014, 55: 38–45. 10.1016/j.conbuildmat.2014.01.040 Zhang H.Y. Kodur V. Qi S.L. Cao L. Wu B. Development of metakaolin–fly ash based geopolymers for fire resistance applications Constr. Build. Mater. 2014 55 38 45 10.1016/j.conbuildmat.2014.01.040 Open DOI

Bleszynski, R., Hooton, R.D., Thomas, M.D., Rogers, C.A., Durability of ternary blend concrete with silica fume and blast-furnace slag: laboratory and outdoor exposure site studies, ACI Mater. J.-Am. Concr. Inst., 2002, 99(5): 499–508. 10.14359/12329 Bleszynski R. Hooton R.D. Thomas M.D. Rogers C.A. Durability of ternary blend concrete with silica fume and blast-furnace slag: laboratory and outdoor exposure site studies ACI Mater. J.-Am. Concr. Inst. 2002 99 5 499 508 10.14359/12329 Open DOI

Mayhoub, O.A., Nasr, E.S.A., Ali, Y., Kohail, M., Properties of slag based geopolymer reactive powder concrete, Ain Shams Eng. J., 2021, 12(1): 99–105. 10.1016/j.asej.2020.08.013 Mayhoub O.A. Nasr E.S.A. Ali Y. Kohail M. Properties of slag based geopolymer reactive powder concrete Ain Shams Eng. J. 2021 12 1 99 105 10.1016/j.asej.2020.08.013 Open DOI

Liu, Y.L., Liu, C., Qian, L.P., Wang, A.G., Sun, D.S., Guo, D., Foaming processes and properties of geopolymer foam concrete: Effect of the activator, Constr. Build. Mater., 2023, 391: 131830. 10.1016/j.conbuildmat.2023.131830 Liu Y.L. Liu C. Qian L.P. Wang A.G. Sun D.S. Guo D. Foaming processes and properties of geopolymer foam concrete: Effect of the activator Constr. Build. Mater. 2023 391 131830 10.1016/j.conbuildmat.2023.131830 Open DOI

Wang, X., Cui, H., Zhou, H., Song, T., Zhang, H., Liu, H., et al., Mechanical properties and energy absorption performance of foamed geopolymer under quasi-static and dynamic compression, Constr. Build. Mater., 2023, 404: 133296. 10.1016/j.conbuildmat.2023.133296 Wang X. Cui H. Zhou H. Song T. Zhang H. Liu H. Mechanical properties and energy absorption performance of foamed geopolymer under quasi-static and dynamic compression Constr. Build. Mater. 2023 404 133296 10.1016/j.conbuildmat.2023.133296 Open DOI

Zhang, X., Zhang, X., Li, X., Tian, D., Ma, M., Wang, T., Optimized pore structure and high permeability of metakaolin/fly-ash-based geopolymer foams from Al– and H2O2–sodium oleate foaming systems, Ceram. Int., 2022, 48(13): 18348–18360. 10.1016/j.ceramint.2022.03.094 Zhang X. Zhang X. Li X. Tian D. Ma M. Wang T. Optimized pore structure and high permeability of metakaolin/fly-ash-based geopolymer foams from Al– and H2O2–sodium oleate foaming systems Ceram. Int. 2022 48 13 18348 18360 10.1016/j.ceramint.2022.03.094 Open DOI

Le, V.S., Louda, P., Tran, H.N., Nguyen, P.D., Bakalova, T., Ewa Buczkowska, K., et al., Study on temperature-dependent properties and fire resistance of metakaolin-based geopolymer foams, Polymers, 2020, 12(12): 2994. 10.3390/polym12122994 Le V.S. Louda P. Tran H.N. Nguyen P.D. Bakalova T. Ewa Buczkowska K. Study on temperature-dependent properties and fire resistance of metakaolin-based geopolymer foams Polymers 2020 12 12 2994 10.3390/polym12122994 Open DOI

Wang, Z., Liu, S., Wu, K., Li, M., Zhang, X., Huang, L., Durability against dry–wet and freeze–thaw cycles of alkali residue-based foamed concrete, Mater. Struct., 2024, 57(3): 51. 10.1617/s11527-024-02318-w Wang Z. Liu S. Wu K. Li M. Zhang X. Huang L. Durability against dry–wet and freeze–thaw cycles of alkali residue-based foamed concrete Mater. Struct. 2024 57 3 51 10.1617/s11527-024-02318-w Open DOI

Dhasindrakrishna, K., Pasupathy, K., Ramakrishnan, S., Sanjayan, J., Progress, current thinking and challenges in geopolymer foam concrete technology, Cem. Concr. Compos., 2021, 116: 103886. 10.1016/j.cemconcomp.2020.103886 Dhasindrakrishna K. Pasupathy K. Ramakrishnan S. Sanjayan J. Progress, current thinking and challenges in geopolymer foam concrete technology Cem. Concr. Compos. 2021 116 103886 10.1016/j.cemconcomp.2020.103886 Open DOI

Alghamdi, H., Neithalath, N., Synthesis and characterization of 3D-printable geopolymeric foams for thermally efficient building envelope materials, Cem. Concr. Compos., 2019, 104: 103377. 10.1016/j.cemconcomp.2019.103377 Alghamdi H. Neithalath N. Synthesis and characterization of 3D-printable geopolymeric foams for thermally efficient building envelope materials Cem. Concr. Compos. 2019 104 103377 10.1016/j.cemconcomp.2019.103377 Open DOI

Gosselin, C., Duballet, R., Roux, P., Gaudillière, N., Dirrenberger, J., Morel, P., Large-scale 3D printing of ultra-high performance concrete – a new processing route for architects and builders, Mater. Des., 2016, 100: 102–109. 10.1016/j.matdes.2016.03.097 Gosselin C. Duballet R. Roux P. Gaudillière N. Dirrenberger J. Morel P. Large-scale 3D printing of ultra-high performance concrete – a new processing route for architects and builders Mater. Des. 2016 100 102 109 10.1016/j.matdes.2016.03.097 Open DOI

Bedarf, P., Szabo, A., Zanini, M., Dillenburger, B., Robotic 3D printing of geopolymer foam for lightweight and insulating building elements, 3D Print. Addit. Manuf., 2024, 11(1): 1–9. 10.1089/3dp.2023.0183 Bedarf P. Szabo A. Zanini M. Dillenburger B. Robotic 3D printing of geopolymer foam for lightweight and insulating building elements 3D Print. Addit. Manuf. 2024 11 1 1 9 10.1089/3dp.2023.0183 Open DOI

Novais, R.M., Pullar, R.C., Labrincha, J.A., Geopolymer foams: An overview of recent advancements, Prog. Mater. Sci., 2020, 109: 100621. 10.1016/j.pmatsci.2019.100621 Novais R.M. Pullar R.C. Labrincha J.A. Geopolymer foams: An overview of recent advancements Prog. Mater. Sci. 2020 109 100621 10.1016/j.pmatsci.2019.100621 Open DOI

Bedarf, P., Dutto, A., Zanini, M., Dillenburger, B., Foam 3D printing for construction: A review of applications, materials, and processes, Autom. Constr., 2021, 130: 103861. 10.1016/j.autcon.2021.103861 Bedarf P. Dutto A. Zanini M. Dillenburger B. Foam 3D printing for construction: A review of applications, materials, and processes Autom. Constr. 2021 130 103861 10.1016/j.autcon.2021.103861 Open DOI

Ismail, A.H., Kusbiantoro, A., Tajunnisa, Y., Ekaputrc, J.J., Laory, I., A review of aluminosilicate sources from inorganic waste for geopolymer production: Sustainable approach for hydrocarbon waste disposal, Clean. Mater., 2024, 13: 100259. 10.1016/j.clema.2024.100259 Ismail A.H. Kusbiantoro A. Tajunnisa Y. Ekaputrc J.J. Laory I. A review of aluminosilicate sources from inorganic waste for geopolymer production: Sustainable approach for hydrocarbon waste disposal Clean. Mater. 2024 13 100259 10.1016/j.clema.2024.100259 Open DOI

Davidovits, J., Inorganic polymeric new materials. J. Therm. Anal., 1991, 37: 1633–1656 Davidovits, J. Inorganic polymeric new materials. J. Therm. Anal., 1991 37 1633 1656 Search in Google Scholar

Wang, Y.S., Alrefaei, Y., Dai, J.G., Silico-aluminophosphate and alkali-aluminosilicate geopolymers: a comparative review, Front. Mater., 2019, 6: 106. 10.3389/fmats.2019.00106 Wang Y.S. Alrefaei Y. Dai J.G. Silico-aluminophosphate and alkali-aluminosilicate geopolymers: a comparative review Front. Mater. 2019 6 106 10.3389/fmats.2019.00106 Open DOI

Zhuang, X.Y., Chen, L., Komarneni, S., Zhou, C.H., Tong, D.S., Yang, H.M., et al., Fly ash-based geopolymer: clean production, properties and applications, J. Clean. Prod., 2016, 125: 253–267. 10.1016/j.jclepro.2016.03.019 Zhuang X.Y. Chen L. Komarneni S. Zhou C.H. Tong D.S. Yang H.M. Fly ash-based geopolymer: clean production, properties and applications J. Clean. Prod. 2016 125 253 267 10.1016/j.jclepro.2016.03.019 Open DOI

Papa, E., Medri, V., Kpogbemabou, D., Morinière, V., Laumonier, J., Vaccari, A., et al., Porosity and insulating properties of silica-fume based foams, Energy Build., 2016, 131: 223–232. 10.1016/j.enbuild.2016.09.031 Papa E. Medri V. Kpogbemabou D. Morinière V. Laumonier J. Vaccari A. Porosity and insulating properties of silica-fume based foams Energy Build. 2016 131 223 232 10.1016/j.enbuild.2016.09.031 Open DOI

Vanathi, V., Nagarajan, V., Jagadesh, P., Influence of sugarcane bagasse ash on mechanical properties of geopolymer concrete, J. Build. Eng., 2023, 79: 107836. 10.1016/j.jobe.2023.107836 Vanathi V. Nagarajan V. Jagadesh P. Influence of sugarcane bagasse ash on mechanical properties of geopolymer concrete J. Build. Eng. 2023 79 107836 10.1016/j.jobe.2023.107836 Open DOI

Kaur, K., Singh, J., Kaur, M., Compressive strength of rice husk ash based geopolymer: The effect of alkaline activator, Constr. Build. Mater., 2018, 169: 188–192. 10.1016/j.conbuildmat.2018.02.200 Kaur K. Singh J. Kaur M. Compressive strength of rice husk ash based geopolymer: The effect of alkaline activator Constr. Build. Mater. 2018 169 188 192 10.1016/j.conbuildmat.2018.02.200 Open DOI

Hamada, H.M., Alattar, A.A., Yahaya, F.M., Muthusamy, K., Tayeh, B.A., Mechanical properties of semi-lightweight concrete containing nano-palm oil clinker powder, Phys. Chem. Earth, Parts A/B/C, 2021, 121: 102977. 10.1016/j.pce.2021.102977 Hamada H.M. Alattar A.A. Yahaya F.M. Muthusamy K. Tayeh B.A. Mechanical properties of semi-lightweight concrete containing nano-palm oil clinker powder Phys. Chem. Earth, Parts A/B/C 2021 121 102977 10.1016/j.pce.2021.102977 Open DOI

Nduka, D.O., Olawuyi, B.J., Ajao, A.M., Okoye, V.C., Okigbo, O.M., Mechanical and durability property dimensions of sustainable bamboo leaf ash in high-performance concrete, Clean. Eng. Technol., 2022, 11: 100583. 10.1016/j.clet.2022.100583 Nduka D.O. Olawuyi B.J. Ajao A.M. Okoye V.C. Okigbo O.M. Mechanical and durability property dimensions of sustainable bamboo leaf ash in high-performance concrete Clean. Eng. Technol. 2022 11 100583 10.1016/j.clet.2022.100583 Open DOI

Rao, F., Liu, Q., Geopolymerization and its potential application in mine tailings consolidation: a review, Miner. Process. Extr. Metall. Rev., 2015, 36(6): 399–409. 10.1080/08827508.2015.1055625 Rao F. Liu Q. Geopolymerization and its potential application in mine tailings consolidation: a review Miner. Process. Extr. Metall. Rev. 2015 36 6 399 409 10.1080/08827508.2015.1055625 Open DOI

Ahmari, S., Zhang, L., Durability and leaching behavior of mine tailings-based geopolymer bricks, Constr. Build. Mater., 2013, 44: 743–750. 10.1016/j.conbuildmat.2013.03.075 Ahmari S. Zhang L. Durability and leaching behavior of mine tailings-based geopolymer bricks Constr. Build. Mater. 2013 44 743 750 10.1016/j.conbuildmat.2013.03.075 Open DOI

Burduhos Nergis, D.D., Vizureanu, P., Sandu, A.V., Burduhos Nergis, D.P., Bejinariu, C., XRD and TG-DTA study of new phosphate-based geopolymers with coal ash or metakaolin as aluminosilicate source and mine tailings addition, Materials, 2021, 15(1): 202. 10.3390/ma15010202 Burduhos Nergis D.D. Vizureanu P. Sandu A.V. Burduhos Nergis D.P. Bejinariu C. XRD and TG-DTA study of new phosphate-based geopolymers with coal ash or metakaolin as aluminosilicate source and mine tailings addition Materials 2021 15 1 202 10.3390/ma15010202 Open DOI

Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S., Geopolymer technology: the current state of the art, J. Mater. Sci., 2007, 42(9): 2917–2933, 10.1007/s10853-006-0637-z Duxson P. Fernández-Jiménez A. Provis J.L. Lukey G.C. Palomo A. van Deventer J.S. Geopolymer technology: the current state of the art J. Mater. Sci. 2007 42 9 2917 2933 10.1007/s10853-006-0637-z Open DOI

ASTM International. (2022). ASTM C618-22: Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, Pennsylvania. 10.1520/C0618-22 ASTM International. (2022). ASTM C618-22 Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, Pennsylvania 10.1520/C0618-22 Open DOI

McLellan, B.C., Williams, R.P., Lay, J., Van Riessen, A., Corder, G.D., Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement, J. Clean. Prod., 2011, 19(9–10): 1080–1090. 10.1016/j.jclepro.2011.02.010 McLellan B.C. Williams R.P. Lay J. Van Riessen A. Corder G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement J. Clean. Prod. 2011 19 9–10 1080 1090 10.1016/j.jclepro.2011.02.010 Open DOI

Su, L., Fu, G., Liang, B., Sun, Q., Zhang, X., Mechanical properties and microstructure evaluation of fly ash - Slag geopolymer foaming materials, Ceram. Int., 2022, 48(13): 18224–18237. 10.1016/j.ceramint.2022.03.081 Su L. Fu G. Liang B. Sun Q. Zhang X. Mechanical properties and microstructure evaluation of fly ash - Slag geopolymer foaming materials Ceram. Int. 2022 48 13 18224 18237 10.1016/j.ceramint.2022.03.081 Open DOI

Etli, S., Evaluation of the effect of silica fume on the fresh, mechanical and durability properties of self-compacting concrete produced by using waste rubber as fine aggregate, J. Clean. Prod., 2023, 384: 135590. 10.1016/j.jclepro.2022.135590 Etli S. Evaluation of the effect of silica fume on the fresh, mechanical and durability properties of self-compacting concrete produced by using waste rubber as fine aggregate J. Clean. Prod. 2023 384 135590 10.1016/j.jclepro.2022.135590 Open DOI

Amran, M., Debbarma, S., Ozbakkaloglu, T., Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties, Constr. Build. Mater., 2021, 270: 121857. 10.1016/j.conbuildmat.2020.121857 Amran M. Debbarma S. Ozbakkaloglu T. Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties Constr. Build. Mater. 2021 270 121857 10.1016/j.conbuildmat.2020.121857 Open DOI

Abdollahnejad, Z., Pacheco-Torgal, F., Félix, T., Tahri, W., Aguiar, J.B., Mix design, properties and cost analysis of fly ash-based geopolymer foam, Constr. Build. Mater., 2015, 80: 18–30. 10.1016/j.conbuildmat.2015.01.063 Abdollahnejad Z. Pacheco-Torgal F. Félix T. Tahri W. Aguiar J.B. Mix design, properties and cost analysis of fly ash-based geopolymer foam Constr. Build. Mater. 2015 80 18 30 10.1016/j.conbuildmat.2015.01.063 Open DOI

Wang, G.C., The utilization of slag in civil infrastructure construction, Elsevier, Woodhead publishing, Duxford, UK, 2016. 10.1016/C2014-0-03995-0 Wang G.C. The utilization of slag in civil infrastructure construction Elsevier Woodhead publishing, Duxford, UK 2016 10.1016/C2014-0-03995-0 Open DOI

ASTM International. (2018). ASTM C989/C989M-18a: Specification for slag cement for use in concrete and mortars, 2013. Pennsylvania. 10.1520/C0989_C0989M-18A ASTM International. (2018). ASTM C989/C989M-18a Specification for slag cement for use in concrete and mortars 2013 Pennsylvania 10.1520/C0989_C0989M-18A Open DOI

Khater, H.M., Effect of silica fume on the characterization of the geopolymer materials, Int. J. Adv. Struct. Eng., 2013, 5(1): 12. 10.1186/2008-6695-5-12 Khater H.M. Effect of silica fume on the characterization of the geopolymer materials Int. J. Adv. Struct. Eng. 2013 5 1 12 10.1186/2008-6695-5-12 Open DOI

Jena, S., Panigrahi, R., Sahu, P. (2019). Effect of Silica Fume on the Properties of Fly Ash Geopolymer Concrete. In B. B. Das & N. Neithalath (Eds.), Lecture notes in Civil Engineering 25. Sustainable Construction and Building Materials, Springer Nature Singapore, (pp. 145–153). 10.1007/978-981-13-3317-0_13 Jena, S. Panigrahi, R. Sahu, P 2019 Effect of Silica Fume on the Properties of Fly Ash Geopolymer Concrete In B. B. Das & N. Neithalath (Eds.), Lecture notes in Civil Engineering 25. Sustainable Construction and Building Materials Springer Nature Singapore pp. 145 153 10.1007/978-981-13-3317-0_13 Open DOI

Shakouri, S., Bayer, Ö., Erdoğan, S.T., Development of silica fume-based geopolymer foams, Constr. Build. Mater., 2020, 260: 120442. 10.1016/j.conbuildmat.2020.120442 Shakouri S. Bayer Ö. Erdoğan S.T. Development of silica fume-based geopolymer foams Constr. Build. Mater. 2020 260 120442 10.1016/j.conbuildmat.2020.120442 Open DOI

Malkawi, A.B., Nuruddin, M.F., Fauzi, A., Almattarneh, H., Mohammed, B.S., Effects of alkaline solution on properties of the HCFA geopolymer mortars, Procedia Eng., 2016, 148: 710–717. 10.1016/j.proeng.2016.06.581 Malkawi A.B. Nuruddin M.F. Fauzi A. Almattarneh H. Mohammed B.S. Effects of alkaline solution on properties of the HCFA geopolymer mortars Procedia Eng. 2016 148 710 717 10.1016/j.proeng.2016.06.581 Open DOI

Esparham, A., Moradikhou, A.B., Jamshidi Avanaki, M., Effect of various alkaline activator solutions on compressive strength of fly ash-based geopolymer concrete, Jcema, 2020, 4(2): 115–123. 10.22034/jcema.2020.224071.1018 Esparham A. Moradikhou A.B. Jamshidi Avanaki M. Effect of various alkaline activator solutions on compressive strength of fly ash-based geopolymer concrete Jcema 2020 4 2 115 123 10.22034/jcema.2020.224071.1018 Open DOI

Ma, C., Zhao, B., Guo, S., Long, G., Xie, Y., Properties and characterization of green one-part geopolymer activated by composite activators, J. Clean. Prod., 2019, 220: 188–199. 10.1016/j.jclepro.2019.02.159 Ma C. Zhao B. Guo S. Long G. Xie Y. Properties and characterization of green one-part geopolymer activated by composite activators J. Clean. Prod. 2019 220 188 199 10.1016/j.jclepro.2019.02.159 Open DOI

Chen, B., Wang, J., Zhao, J., Effect of sodium aluminate dosage as a solid alkaline activator on the properties of alkali‐activated slag paste, Adv. Mater. Sci. Eng., 2021, 2021(1): 6658588. 10.1155/2021/6658588 Chen B. Wang J. Zhao J. Effect of sodium aluminate dosage as a solid alkaline activator on the properties of alkali‐activated slag paste Adv. Mater. Sci. Eng. 2021 2021 1 6658588 10.1155/2021/6658588 Open DOI

Le-Ping, L., Xue-Min, C., Shu-Heng, Q., Jun-Li, Y., Lin, Z., Preparation of phosphoric acid-based porous geopolymers, Appl. Clay Sci., 2010, 50(4): 600–603. 10.1016/j.clay.2010.10.004 Le-Ping L. Xue-Min C. Shu-Heng Q. Jun-Li Y. Lin Z. Preparation of phosphoric acid-based porous geopolymers Appl. Clay Sci. 2010 50 4 600 603 10.1016/j.clay.2010.10.004 Open DOI

Zhang, B., Guo, H., Yuan, P., Deng, L., Zhong, X., Li, Y., et al., Novel acid-based geopolymer synthesized from nanosized tubular halloysite: The role of precalcination temperature and phosphoric acid concentration, Cem. Concr. Compos., 2020, 110: 103601. 10.1016/j.cemconcomp.2020.103601 Zhang B. Guo H. Yuan P. Deng L. Zhong X. Li Y. Novel acid-based geopolymer synthesized from nanosized tubular halloysite: The role of precalcination temperature and phosphoric acid concentration Cem. Concr. Compos. 2020 110 103601 10.1016/j.cemconcomp.2020.103601 Open DOI

Pu, S., Zhu, Z., Song, W., Huo, W., Zhang, J., Mechanical and microscopic properties of fly ash phosphoric acid-based geopolymer paste: A comprehensive study, Constr. Build. Mater., 2021, 299: 123947. 10.1016/j.conbuildmat.2021.123947 Pu S. Zhu Z. Song W. Huo W. Zhang J. Mechanical and microscopic properties of fly ash phosphoric acid-based geopolymer paste: A comprehensive study Constr. Build. Mater. 2021 299 123947 10.1016/j.conbuildmat.2021.123947 Open DOI

Lin, H., Liu, H., Li, Y., Kong, X., Properties and reaction mechanism of phosphoric acid activated metakaolin geopolymer at varied curing temperatures, Cem. Concr. Res., 2021, 144: 106425. 10.1016/j.cemconres.2021.106425 Lin H. Liu H. Li Y. Kong X. Properties and reaction mechanism of phosphoric acid activated metakaolin geopolymer at varied curing temperatures Cem. Concr. Res. 2021 144 106425 10.1016/j.cemconres.2021.106425 Open DOI

Song, Y., Xue, C., Guo, W., Bai, Y., Shi, Y., Zhao, Q., Foamed geopolymer insulation materials: Research progress on insulation performance and durability, J. Clean. Prod., 2024, 444: 140991. 10.1016/j.jclepro.2024.140991 Song Y. Xue C. Guo W. Bai Y. Shi Y. Zhao Q. Foamed geopolymer insulation materials: Research progress on insulation performance and durability J. Clean. Prod. 2024 444 140991 10.1016/j.jclepro.2024.140991 Open DOI

Kočí, V., Černý, R., Directly foamed geopolymers: A review of recent studies, Cem. Concr. Compos., 2022, 130: 104530. 10.1016/j.cemconcomp.2022.104530 Kočí V. Černý R. Directly foamed geopolymers: A review of recent studies Cem. Concr. Compos. 2022 130 104530 10.1016/j.cemconcomp.2022.104530 Open DOI

Huang, Z., Zhang, T., Wen, Z., Proportioning and characterization of Portland cement-based ultra-lightweight foam concretes, Constr. Build. Mater., 2015, 79: 390–396. 10.1016/j.conbuildmat.2015.01.051 Huang Z. Zhang T. Wen Z. Proportioning and characterization of Portland cement-based ultra-lightweight foam concretes Constr. Build. Mater. 2015 79 390 396 10.1016/j.conbuildmat.2015.01.051 Open DOI

Medri, V., Papa, E., Dedecek, J., Jirglova, H., Benito, P., Vaccari, A., et al., Effect of metallic Si addition on polymerization degree of in situ foamed alkali-aluminosilicates, Ceram. Int., 2013, 39(7): 7657–7668. 10.1016/j.ceramint.2013.02.104 Medri V. Papa E. Dedecek J. Jirglova H. Benito P. Vaccari A. Effect of metallic Si addition on polymerization degree of in situ foamed alkali-aluminosilicates Ceram. Int. 2013 39 7 7657 7668 10.1016/j.ceramint.2013.02.104 Open DOI

Gualtieri, M.L., Cavallini, A., Romagnoli, M., Interactive powder mixture concept for the preparation of geopolymers with fine porosity, J. Eur. Ceram. Soc., 2016, 36(10): 2641–2646. 10.1016/j.jeurceramsoc.2016.03.030 Gualtieri M.L. Cavallini A. Romagnoli M. Interactive powder mixture concept for the preparation of geopolymers with fine porosity J. Eur. Ceram. Soc. 2016 36 10 2641 2646 10.1016/j.jeurceramsoc.2016.03.030 Open DOI

Pantongsuk, T., Kittisayarm, P., Muenglue, N., Benjawan, S., Thavorniti, P., Tippayasam, C., et al., Effect of hydrogen peroxide and bagasse ash additions on thermal conductivity and thermal resistance of geopolymer foams, Mater. Today Commun., 2021, 26: 102149. 10.1016/j.mtcomm.2021.102149 Pantongsuk T. Kittisayarm P. Muenglue N. Benjawan S. Thavorniti P. Tippayasam C. Effect of hydrogen peroxide and bagasse ash additions on thermal conductivity and thermal resistance of geopolymer foams Mater. Today Commun. 2021 26 102149 10.1016/j.mtcomm.2021.102149 Open DOI

Huang, Y., Gong, L., Shi, L., Cao, W., Pan, Y., Cheng, X., Experimental investigation on the influencing factors of preparing porous fly ash-based geopolymer for insulation material, Energy Build., 2018, 168: 9–18. 10.1016/j.enbuild.2018.02.043 Huang Y. Gong L. Shi L. Cao W. Pan Y. Cheng X. Experimental investigation on the influencing factors of preparing porous fly ash-based geopolymer for insulation material Energy Build. 2018 168 9 18 10.1016/j.enbuild.2018.02.043 Open DOI

Yan, S., Zhang, F., Liu, J., Ren, B., He, P., Jia, D., et al., Green synthesis of high porosity waste gangue microsphere/geopolymer composite foams via hydrogen peroxide modification, J. Clean. Prod., 2019, 227: 483–494. 10.1016/j.jclepro.2019.04.185 Yan S. Zhang F. Liu J. Ren B. He P. Jia D. Green synthesis of high porosity waste gangue microsphere/geopolymer composite foams via hydrogen peroxide modification J. Clean. Prod. 2019 227 483 494 10.1016/j.jclepro.2019.04.185 Open DOI

Novais, R.M., Ascensão, G., Ferreira, N., Seabra, M.P., Labrincha, J.A., Influence of water and aluminium powder content on the properties of waste-containing geopolymer foams, Ceram. Int., 2018, 44(6): 6242–6249. 10.1016/j.ceramint.2018.01.009 Novais R.M. Ascensão G. Ferreira N. Seabra M.P. Labrincha J.A. Influence of water and aluminium powder content on the properties of waste-containing geopolymer foams Ceram. Int. 2018 44 6 6242 6249 10.1016/j.ceramint.2018.01.009 Open DOI

Hajimohammadi, A., Ngo, T., Mendis, P., How does aluminium foaming agent impact the geopolymer formation mechanism?, Cem. Concr. Compos., 2017, 80: 277–286. 10.1016/j.cemconcomp.2017.03.022 Hajimohammadi A. Ngo T. Mendis P. How does aluminium foaming agent impact the geopolymer formation mechanism? Cem. Concr. Compos. 2017 80 277 286 10.1016/j.cemconcomp.2017.03.022 Open DOI

Anggarini, U., Pratapa, S., Purnomo, V., Sukmana, N.C., A comparative study of the utilization of synthetic foaming agent and aluminum powder as pore-forming agents in lightweight geopolymer synthesis, Open. Chem., 2019, 17(1): 629–638. 10.1515/chem-2019-0073 Anggarini U. Pratapa S. Purnomo V. Sukmana N.C. A comparative study of the utilization of synthetic foaming agent and aluminum powder as pore-forming agents in lightweight geopolymer synthesis Open. Chem. 2019 17 1 629 638 10.1515/chem-2019-0073 Open DOI

Łach, M., Pławecka, K., Bąk, A., Lichocka, K., Korniejenko, K., Cheng, A., et al., Determination of the influence of hydraulic additives on the foaming process and stability of the produced geopolymer foams, Materials, 2021, 14(17): 5090. 10.3390/ma14175090 Łach M. Pławecka K. Bąk A. Lichocka K. Korniejenko K. Cheng A. Determination of the influence of hydraulic additives on the foaming process and stability of the produced geopolymer foams Materials 2021 14 17 5090 10.3390/ma14175090 Open DOI

Bai, C., Colombo, P., High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactant, Ceram. Int., 2017, 43(2): 2267–2273. 10.1016/j.ceramint.2016.10.205 Bai C. Colombo P. High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactant Ceram. Int. 2017 43 2 2267 2273 10.1016/j.ceramint.2016.10.205 Open DOI

Bai, C., Ni, T., Wang, Q., Li, H., Colombo, P., Porosity, mechanical and insulating properties of geopolymer foams using vegetable oil as the stabilizing agent, J. Eur. Ceram. Soc., 2018, 38(2): 799–805. 10.1016/j.jeurceramsoc.2017.09.021 Bai C. Ni T. Wang Q. Li H. Colombo P. Porosity, mechanical and insulating properties of geopolymer foams using vegetable oil as the stabilizing agent J. Eur. Ceram. Soc. 2018 38 2 799 805 10.1016/j.jeurceramsoc.2017.09.021 Open DOI

Korat, L., Ducman, V., The influence of the stabilizing agent SDS on porosity development in alkali-activated fly-ash based foams, Cem. Concr. Compos., 2017, 80: 168–174. 10.1016/j.cemconcomp.2017.03.010 Korat L. Ducman V. The influence of the stabilizing agent SDS on porosity development in alkali-activated fly-ash based foams Cem. Concr. Compos. 2017 80 168 174 10.1016/j.cemconcomp.2017.03.010 Open DOI

Liu, Z., Shao, N.N., Qin, J.F., Kong, F.L., Wang, C.X, Wang, D.M., Strength and thermal behavior of low weight foam geopolymer using circulating fluidized bed combustion fly ash, J. Cent. South. Univ., 2015, 22(9): 3633–3640. 10.1007/s11771-015-2904-0 Liu Z. Shao N.N. Qin J.F. Kong F.L. Wang C.X, Wang D.M. Strength and thermal behavior of low weight foam geopolymer using circulating fluidized bed combustion fly ash J. Cent. South. Univ. 2015 22 9 3633 3640 10.1007/s11771-015-2904-0 Open DOI

Masi, G., Rickard, W.D., Vickers, L., Bignozzi, M.C., Van Riessen, A., A comparison between different foaming methods for the synthesis of light weight geopolymers, Ceram. Int., 2014, 40(9): 13891–13902. 10.1016/j.ceramint.2014.05.108 Masi G. Rickard W.D. Vickers L. Bignozzi M.C. Van Riessen A. A comparison between different foaming methods for the synthesis of light weight geopolymers Ceram. Int. 2014 40 9 13891 13902 10.1016/j.ceramint.2014.05.108 Open DOI

Guo, S., Wang, W., Jia, Z., Qi, X., Zhu, H., Liu, X., Nanoparticle-stabilized foam with controllable structure for enhanced foamed concrete, Constr. Build. Mater., 2023, 362: 129723. 10.1016/j.conbuildmat.2022.129723 Guo S. Wang W. Jia Z. Qi X. Zhu H. Liu X. Nanoparticle-stabilized foam with controllable structure for enhanced foamed concrete Constr. Build. Mater. 2023 362 129723 10.1016/j.conbuildmat.2022.129723 Open DOI

Tiyasangthong, S., Yoosuk, P., Krosoongnern, K., Krittacom, B., Nachaisit, P., Suksiripattanapong, C., Unit weight, strengths and thermal conductivity of cellular lightweight fly ash geopolymer mortar reinforced with polyvinyl alcohol, Civ. Eng. Archit., 2022, 10(7): 2943–2952. 10.13189/cea.2022.100713 Tiyasangthong S. Yoosuk P. Krosoongnern K. Krittacom B. Nachaisit P. Suksiripattanapong C. Unit weight, strengths and thermal conductivity of cellular lightweight fly ash geopolymer mortar reinforced with polyvinyl alcohol Civ. Eng. Archit. 2022 10 7 2943 2952 10.13189/cea.2022.100713 Open DOI

Nodehi, M., A comparative review on foam-based versus lightweight aggregate-based alkali-activated materials and geopolymer, Innov. Infrastruct. Solut., 2021, 6(4): 231. 10.1007/s41062-021-00595-w Nodehi M. A comparative review on foam-based versus lightweight aggregate-based alkali-activated materials and geopolymer Innov. Infrastruct. Solut. 2021 6 4 231 10.1007/s41062-021-00595-w Open DOI

Liu, M.Y.J., Alengaram, U.J., Jumaat, M.Z., Mo, K.H., Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete, Energy Build., 2014, 72: 238–245. 10.1016/j.enbuild.2013.12.029 Liu M.Y.J. Alengaram U.J. Jumaat M.Z. Mo K.H. Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete Energy Build. 2014 72 238 245 10.1016/j.enbuild.2013.12.029 Open DOI

Pasupathy, K., Ramakrishnan, S., Sanjayan, J., Enhancing the mechanical and thermal properties of aerated geopolymer concrete using porous lightweight aggregates, Constr. Build. Mater., 2020, 264: 120713. 10.1016/j.conbuildmat.2020.120713 Pasupathy K. Ramakrishnan S. Sanjayan J. Enhancing the mechanical and thermal properties of aerated geopolymer concrete using porous lightweight aggregates Constr. Build. Mater. 2020 264 120713 10.1016/j.conbuildmat.2020.120713 Open DOI

Wang, J., Li, X., Hu, Y., Li, Y., Hu, P., Zhao, Y., Physical and high temperature properties of basalt fiber-reinforced geopolymer foam with hollow microspheres, Constr. Build. Mater., 2024, 411: 134698. 10.1016/j.conbuildmat.2023.134698 Wang J. Li X. Hu Y. Li Y. Hu P. Zhao Y. Physical and high temperature properties of basalt fiber-reinforced geopolymer foam with hollow microspheres Constr. Build. Mater. 2024 411 134698 10.1016/j.conbuildmat.2023.134698 Open DOI

Zhang, N., Wang, B., Yue, D., Pan, D., Wang, H., Li, J., et al., Waste liquid-added regeneration activator to enhance the pore structure and compressive strength of geopolymer-foam-fiber: A sustainable strategy of kenaf fiber pretreatment and reuse, Process. Saf. Environ. Prot., 2023, 170: 536–544. 10.1016/j.psep.2022.12.011 Zhang N. Wang B. Yue D. Pan D. Wang H. Li J. Waste liquid-added regeneration activator to enhance the pore structure and compressive strength of geopolymer-foam-fiber: A sustainable strategy of kenaf fiber pretreatment and reuse Process. Saf. Environ. Prot. 2023 170 536 544 10.1016/j.psep.2022.12.011 Open DOI

Wang, Y., Zheng, T., Zheng, X., Liu, Y., Darkwa, J., Zhou, G., Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibers, Constr. Build. Mater., 2020, 251: 118960. 10.1016/j.conbuildmat.2020.118960 Wang Y. Zheng T. Zheng X. Liu Y. Darkwa J. Zhou G. Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibers Constr. Build. Mater. 2020 251 118960 10.1016/j.conbuildmat.2020.118960 Open DOI

Mackenzie, K.J.D., Welter, M., Geopolymer (aluminosilicate) composites: synthesis, properties and applications, In Advances in Ceramic Matrix Composites, Elsevier, Woodhead publishing, Cambridge, UK, 2014, pp. 445–470. 10.1533/9780857098825.3.445 Mackenzie K.J.D. Welter M. Geopolymer (aluminosilicate) composites: synthesis, properties and applications In Advances in Ceramic Matrix Composites Elsevier Woodhead publishing, Cambridge, UK 2014 pp. 445 470 10.1533/9780857098825.3.445 Open DOI

Xu, H., Van Deventer, J.S.J., The geopolymerisation of alumino-silicate minerals, Int. J. Miner. Process., 2000, 59(3): 247–266. 10.1016/S0301-7516(99)00074-5 Xu H. Van Deventer J.S.J. The geopolymerisation of alumino-silicate minerals Int. J. Miner. Process. 2000 59 3 247 266 10.1016/S0301-7516(99)00074-5 Open DOI

Li, T., Huang, F., Zhu, J., Tang, J., Liu, J., Effect of foaming gas and cement type on the thermal conductivity of foamed concrete, Constr. Build. Mater., 2020, 231: 117197. 10.1016/j.conbuildmat.2019.117197 Li T. Huang F. Zhu J. Tang J. Liu J. Effect of foaming gas and cement type on the thermal conductivity of foamed concrete Constr. Build. Mater. 2020 231 117197 10.1016/j.conbuildmat.2019.117197 Open DOI

Bai, C., Colombo, P., Processing, properties and applications of highly porous geopolymers: A review, Ceram. Int., 2018, 44(14): 16103–16118. 10.1016/j.ceramint.2018.05.219 Bai C. Colombo P. Processing, properties and applications of highly porous geopolymers: A review Ceram. Int. 2018 44 14 16103 16118 10.1016/j.ceramint.2018.05.219 Open DOI

Sharma, S., Medpelli, D., Chen, S., Seo, D.K., Calcium-modified hierarchically porous aluminosilicate geopolymer as a highly efficient regenerable catalyst for biodiesel production, RSC Adv., 2015, 5(80): 65454–65461. 10.1039/C5RA01823D Sharma S. Medpelli D. Chen S. Seo D.K. Calcium-modified hierarchically porous aluminosilicate geopolymer as a highly efficient regenerable catalyst for biodiesel production RSC Adv. 2015 5 80 65454 65461 10.1039/C5RA01823D Open DOI

Zhang, Z., Provis, J.L., Reid, A., Wang, H., Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete, Cem. Concr. Compos., 2015, 62: 97–105. 10.1016/j.cemconcomp.2015.03.013 Zhang Z. Provis J.L. Reid A. Wang H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete Cem. Concr. Compos. 2015 62 97 105 10.1016/j.cemconcomp.2015.03.013 Open DOI

Franchin, G., Scanferla, P., Zeffiro, L., Elsayed, H., Baliello, A., Giacomello, G., et al., Direct ink writing of geopolymeric inks, J. Eur. Ceram. Soc., 2017, 37(6): 2481–2489. 10.1016/j.jeurceramsoc.2017.01.030 Franchin G. Scanferla P. Zeffiro L. Elsayed H. Baliello A. Giacomello G. Direct ink writing of geopolymeric inks J. Eur. Ceram. Soc. 2017 37 6 2481 2489 10.1016/j.jeurceramsoc.2017.01.030 Open DOI

Barve, P., Bahrami, A., Shah, S., Geopolymer 3D printing: a comprehensive review on rheological and structural performance assessment, printing process parameters, and microstructure, Front. Mater., 2023, 10: 1241869. 10.3389/fmats.2023.1241869 Barve P. Bahrami A. Shah S. Geopolymer 3D printing: a comprehensive review on rheological and structural performance assessment, printing process parameters, and microstructure Front. Mater. 2023 10 1241869 10.3389/fmats.2023.1241869 Open DOI

Muthukrishnan, S., Ramakrishnan, S., Sanjayan, J., Effect of microwave heating on interlayer bonding and buildability of geopolymer 3D concrete printing, Constr. Build. Mater., 2020, 265: 120786. 10.1016/j.conbuildmat.2020.120786 Muthukrishnan S. Ramakrishnan S. Sanjayan J. Effect of microwave heating on interlayer bonding and buildability of geopolymer 3D concrete printing Constr. Build. Mater. 2020 265 120786 10.1016/j.conbuildmat.2020.120786 Open DOI

Wu, Y., Wang, J.Y., Monteiro, P.J., Zhang, M.H., Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings, Constr. Build. Mater., 2015, 87: 100–112. 10.1016/j.conbuildmat.2015.04.004 Wu Y. Wang J.Y. Monteiro P.J. Zhang M.H. Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings Constr. Build. Mater. 2015 87 100 112 10.1016/j.conbuildmat.2015.04.004 Open DOI

Góra, M., Bańkosz, M., Tyliszczak, B., Use of innovative methods to produce highly insulating walls using 3D-printing technology, Materials, 2024, 17(16): 3990. 10.3390/ma17163990 Góra M. Bańkosz M. Tyliszczak B. Use of innovative methods to produce highly insulating walls using 3D-printing technology Materials 2024 17 16 3990 10.3390/ma17163990 Open DOI

Ziejewska, C., Marczyk, J., Korniejenko, K., Bednarz, S., Sroczyk, P., et al., 3D printing of concrete-geopolymer hybrids, Materials, 2022, 15(8): 2819. 10.3390/ma15082819 Ziejewska C. Marczyk J. Korniejenko K. Bednarz S. Sroczyk P. 3D printing of concrete-geopolymer hybrids Materials 2022 15 8 2819 10.3390/ma15082819 Open DOI

Zoude, C., Gremillard, L., Prud’Homme, E., Combination of chemical foaming and direct ink writing for lightweight geopolymers, Open. Ceram., 2023, 16: 100478. 10.1016/j.oceram.2023.100478 Zoude C. Gremillard L. Prud’Homme E. Combination of chemical foaming and direct ink writing for lightweight geopolymers Open. Ceram. 2023 16 100478 10.1016/j.oceram.2023.100478 Open DOI

Ma, S., Jiang, Y., Fu, S., He, P., Sun, C., Duan, X., et al., 3D-printed Lunar regolith simulant-based geopolymer composites with bio-inspired sandwich architectures, J. Adv. Ceram., 2023, 12(3): 510–525. 10.26599/JAC.2023.9220700 Ma S. Jiang Y. Fu S. He P. Sun C. Duan X. 3D-printed Lunar regolith simulant-based geopolymer composites with bio-inspired sandwich architectures J. Adv. Ceram. 2023 12 3 510 525 10.26599/JAC.2023.9220700 Open DOI

Ulubeyli, S., Lunar shelter construction issues: The state-of-the-art towards 3D printing technologies, Acta Astronaut., 2022, 195: 318–343. 10.1016/j.actaastro.2022.03.033 Ulubeyli S. Lunar shelter construction issues: The state-of-the-art towards 3D printing technologies Acta Astronaut. 2022 195 318 343 10.1016/j.actaastro.2022.03.033 Open DOI

Xu, F., Gu, G., Zhang, W., Wang, H., Huang, X., Zhu, J., Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method, Ceram. Int., 2018, 44(16): 19989–19997. 10.1016/j.ceramint.2018.07.267 Xu F. Gu G. Zhang W. Wang H. Huang X. Zhu J. Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method Ceram. Int. 2018 44 16 19989 19997 10.1016/j.ceramint.2018.07.267 Open DOI

Petlitckaia, S., Poulesquen, A., Design of lightweight metakaolin based geopolymer foamed with hydrogen peroxide, Ceram. Int., 2019, 45(1): 1322–1330. 10.1016/j.ceramint.2018.10.021 Petlitckaia S. Poulesquen A. Design of lightweight metakaolin based geopolymer foamed with hydrogen peroxide Ceram. Int. 2019 45 1 1322 1330 10.1016/j.ceramint.2018.10.021 Open DOI

Sanjayan, J.G., Nazari, A., Chen, L., Nguyen, G.H., Physical and mechanical properties of lightweight aerated geopolymer, Constr. Build. Mater., 2015, 79: 236–244. 10.1016/j.conbuildmat.2015.01.043 Sanjayan J.G. Nazari A. Chen L. Nguyen G.H. Physical and mechanical properties of lightweight aerated geopolymer Constr. Build. Mater. 2015 79 236 244 10.1016/j.conbuildmat.2015.01.043 Open DOI

Jaya, N.A., Yun-Ming, L., Cheng-Yong, H., Abdullah, M.M.A.B., Hussin, K., Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer, Constr. Build. Mater., 2020, 247: 118641. 10.1016/j.conbuildmat.2020.118641 Jaya N.A. Yun-Ming L. Cheng-Yong H. Abdullah M.M.A.B. Hussin K. Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer Constr. Build. Mater. 2020 247 118641 10.1016/j.conbuildmat.2020.118641 Open DOI

Luna-Galiano, Y., Leiva, C., Arenas, C., Fernández-Pereira, C., Fly ash based geopolymeric foams using silica fume as pore generation agent. Physical, mechanical and acoustic properties, J. Non-Cryst. Solids, 2018, 500: 196–204. 10.1016/j.jnoncrysol.2018.07.069 Luna-Galiano Y. Leiva C. Arenas C. Fernández-Pereira C. Fly ash based geopolymeric foams using silica fume as pore generation agent. Physical, mechanical and acoustic properties J. Non-Cryst. Solids 2018 500 196 204 10.1016/j.jnoncrysol.2018.07.069 Open DOI

Hajimohammadi, A., Ngo, T., Mendis, P., Sanjayan, J., Regulating the chemical foaming reaction to control the porosity of geopolymer foams, Mater. Des., 2017, 120: 255–265. 10.1016/j.matdes.2017.02.026 Hajimohammadi A. Ngo T. Mendis P. Sanjayan J. Regulating the chemical foaming reaction to control the porosity of geopolymer foams Mater. Des. 2017 120 255 265 10.1016/j.matdes.2017.02.026 Open DOI

Senff, L., Novais, R.M., Carvalheiras, J., Labrincha, J.A., Eco-friendly approach to enhance the mechanical performance of geopolymer foams: Using glass fibre waste coming from wind blade production, Constr. Build. Mater., 2020, 239: 117805. 10.1016/j.conbuildmat.2019.117805 Senff L. Novais R.M. Carvalheiras J. Labrincha J.A. Eco-friendly approach to enhance the mechanical performance of geopolymer foams: Using glass fibre waste coming from wind blade production Constr. Build. Mater. 2020 239 117805 10.1016/j.conbuildmat.2019.117805 Open DOI

Ducman, V., Korat, L., Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents, Mater. Charact., 2016, 113: 207–213. 10.1016/j.matchar.2016.01.019 Ducman V. Korat L. Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents Mater. Charact. 2016 113 207 213 10.1016/j.matchar.2016.01.019 Open DOI

Shen, S., Tian, J., Zhu, Y., Zhang, X., Hu, P., Synthesis of industrial solid wastes based geopolymer foams for building energy conservation: Effects of metallic aluminium and reclaimed materials, Constr. Build. Mater., 2022, 328: 127083. 10.1016/j.conbuildmat.2022.127083 Shen S. Tian J. Zhu Y. Zhang X. Hu P. Synthesis of industrial solid wastes based geopolymer foams for building energy conservation: Effects of metallic aluminium and reclaimed materials Constr. Build. Mater. 2022 328 127083 10.1016/j.conbuildmat.2022.127083 Open DOI

Bai, C., Zheng, J., Rizzi, G.A., Colombo, P., Low-temperature fabrication of SiC/geopolymer cellular composites, Compos. Part. B: Eng., 2018, 137: 23–30. 10.1016/j.compositesb.2017.11.013 Bai C. Zheng J. Rizzi G.A. Colombo P. Low-temperature fabrication of SiC/geopolymer cellular composites Compos. Part. B: Eng. 2018 137 23 30 10.1016/j.compositesb.2017.11.013 Open DOI

Peng, X., Li, H., Shuai, Q., Wang, L., Fire resistance of alkali activated geopolymer foams produced from metakaolin and Na2O2. Materials, 2020, 13(3): 535. 10.3390/ma13030535 Peng X. Li H. Shuai Q. Wang L. Fire resistance of alkali activated geopolymer foams produced from metakaolin and Na2O2 Materials 2020 13 3 535 10.3390/ma13030535 Open DOI

Feng, J., Zhang, R., Gong, L., Li, Y., Cao, W., Cheng, X., Development of porous fly ash-based geopolymer with low thermal conductivity, Mater. Des. (1980-2015), 2015, 65: 529–533. 10.1016/j.matdes.2014.09.024 Feng J. Zhang R. Gong L. Li Y. Cao W. Cheng X. Development of porous fly ash-based geopolymer with low thermal conductivity Mater. Des. (1980-2015) 2015 65 529 533 10.1016/j.matdes.2014.09.024 Open DOI

Pasupathy, K., Ramakrishnan, S., Sanjayan, J., Influence of recycled concrete aggregate on the foam stability of aerated geopolymer concrete, Constr. Build. Mater., 2021, 271: 121850. 10.1016/j.conbuildmat.2020.121850 Pasupathy K. Ramakrishnan S. Sanjayan J. Influence of recycled concrete aggregate on the foam stability of aerated geopolymer concrete Constr. Build. Mater. 2021 271 121850 10.1016/j.conbuildmat.2020.121850 Open DOI

Sornlar, W., Wannagon, A., Supothina, S., Stabilized homogeneous porous structure and pore type effects on the properties of lightweight kaolinite-based geopolymers, J. Build. Eng., 2021, 44: 103273. 10.1016/j.jobe.2021.103273 Sornlar W. Wannagon A. Supothina S. Stabilized homogeneous porous structure and pore type effects on the properties of lightweight kaolinite-based geopolymers J. Build. Eng. 2021 44 103273 10.1016/j.jobe.2021.103273 Open DOI

Cui, Y., Wang, D., Zhao, J., Li, D., Ng, S., Rui, Y., Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material, J. Build. Eng., 2018, 20: 21–29. 10.1016/j.jobe.2018.06.002 Cui Y. Wang D. Zhao J. Li D. Ng S. Rui Y. Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material J. Build. Eng. 2018 20 21 29 10.1016/j.jobe.2018.06.002 Open DOI

Cui, Y., Wang, D., Effects of water on pore structure and thermal conductivity of fly ash-based foam geopolymers, Adv. Mater. Sci. Eng., 2019, 2019: 1–10. 10.1155/2019/3202794 Cui Y. Wang D. Effects of water on pore structure and thermal conductivity of fly ash-based foam geopolymers Adv. Mater. Sci. Eng. 2019 2019 1 10 10.1155/2019/3202794 Open DOI

Shao, N.N., Zhang, Y.B., Liu, Z., Wang, D.M., Zhang, Z.T., Fabrication of hollow microspheres filled fly ash based foam geopolymers with ultra-low thermal conductivity and relative high strength, Constr. Build. Mater., 2018, 185: 567–573. 10.1016/j.conbuildmat.2018.07.077 Shao N.N. Zhang Y.B. Liu Z. Wang D.M. Zhang Z.T. Fabrication of hollow microspheres filled fly ash based foam geopolymers with ultra-low thermal conductivity and relative high strength Constr. Build. Mater. 2018 185 567 573 10.1016/j.conbuildmat.2018.07.077 Open DOI

Wongkvanklom, A., Posi, P., Kasemsiri, P., Sata, V., Cao, T., Chindaprasirt, P., Strength, thermal conductivity and sound absorption of cellular lightweight high calcium fly ash geopolymer concrete, Eng. Appl. Sci. Res., 2021, 48: 487496. 10.14456/EASR.2021.51 Wongkvanklom A. Posi P. Kasemsiri P. Sata V. Cao T. Chindaprasirt P. Strength, thermal conductivity and sound absorption of cellular lightweight high calcium fly ash geopolymer concrete Eng. Appl. Sci. Res. 2021 48 487496 10.14456/EASR.2021.51 Open DOI

Bai, C., Franchin, G., Elsayed, H., Zaggia, A., Conte, L., Li, H., et al., High-porosity geopolymer foams with tailored porosity for thermal insulation and wastewater treatment, J. Mater. Res., 2017, 32(17): 3251–3259. 10.1557/jmr.2017.127 Bai C. Franchin G. Elsayed H. Zaggia A. Conte L. Li H. High-porosity geopolymer foams with tailored porosity for thermal insulation and wastewater treatment J. Mater. Res. 2017 32 17 3251 3259 10.1557/jmr.2017.127 Open DOI

Shilar, F.A., Ganachari, S.V., Patil, V.B., Bhojaraja, B.E., Khan, T.Y., Almakayeel, N., A review of 3D printing of geopolymer composites for structural and functional applications, Constr. Build. Mater., 2023, 400: 132869. 10.1016/j.conbuildmat.2023.132869 Shilar F.A. Ganachari S.V. Patil V.B. Bhojaraja B.E. Khan T.Y. Almakayeel N. A review of 3D printing of geopolymer composites for structural and functional applications Constr. Build. Mater. 2023 400 132869 10.1016/j.conbuildmat.2023.132869 Open DOI

Lazorenko, G., Kasprzhitskii, A., Geopolymer additive manufacturing: A review, Addit. Manuf., 2022, 55: 102782. 10.1016/j.addma.2022.102782 Lazorenko G. Kasprzhitskii A. Geopolymer additive manufacturing: A review Addit. Manuf. 2022 55 102782 10.1016/j.addma.2022.102782 Open DOI

Raza, M.H., Zhong, R.Y., Khan, M., Recent advances and productivity analysis of 3D printed geopolymers, Addit. Manuf., 2022, 52, 102685. 10.1016/j.addma.2022.102685 Raza M.H. Zhong R.Y. Khan M. Recent advances and productivity analysis of 3D printed geopolymers Addit. Manuf. 2022 52 102685 10.1016/j.addma.2022.102685 Open DOI