This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Chen, C., Xu, R., Tong, D., Qin, X., Cheng, J., Liu, J., et al., A striking growth of CO2 emissions from the global cement industry driven by new facilities in emerging countries, Environ. Res. Lett., 2022, 17(4): 044007. 10.1088/1748-9326/ac48b5ChenC.XuR.TongD.QinX.ChengJ.LiuJ.A striking growth of CO2 emissions from the global cement industry driven by new facilities in emerging countries, Environ. Res. Lett.202217404400710.1088/1748-9326/ac48b5Open DOI
He, Z., Zhu, X., Wang, J., Mu, M., Wang, Y., Comparison of CO2 emissions from OPC and recycled cement production, Constr. Build. Mater., 2019, 211: 965–973. 10.1016/j.conbuildmat.2019.03.289HeZ.ZhuX.WangJ.MuM.WangY.Comparison of CO2 emissions from OPC and recycled cement productionConstr. Build. Mater.201921196597310.1016/j.conbuildmat.2019.03.289Open DOI
Zhang, Z., Provis, J.L., Reid, A., Wang, H., Geopolymer foam concrete: An emerging material for sustainable construction, Constr. Build. Mater., 2014, 56: 113–127. 10.1016/j.conbuildmat.2014.01.081ZhangZ.ProvisJ.L.ReidA.WangH.Geopolymer foam concrete: An emerging material for sustainable constructionConstr. Build. Mater.20145611312710.1016/j.conbuildmat.2014.01.081Open DOI
Alves, L.A., Nogueira, A., Vazquez, E., De Barros, S., A bibliographic historical analysis on geopolymer as a substitute for Portland cement, KEM, 2020, 834: 127–131. 10.4028/www.scientific.net/KEM.834.127AlvesL.A.NogueiraA.Vazquez,E.De BarrosS.A bibliographic historical analysis on geopolymer as a substitute for Portland cementKEM202083412713110.4028/www.scientific.net/KEM.834.127Open DOI
Davidovits, J., Geopolymers and geopolymeric materials, J. Therm. Anal., 1989, 35(2): 429–441. 10.1007/BF01904446DavidovitsJ.Geopolymers and geopolymeric materialsJ. Therm. Anal.198935242944110.1007/BF01904446Open DOI
Davidovits, J., Geopolymer cement a review, published in geopolymer science and technics, Tech. Pap., 2013, 21: 1–11DavidovitsJ.Geopolymer cement a review, published in geopolymer science and technicsTech. Pap.201321111Search in Google Scholar
Aslan, S., Erkan, İ.H., The effects of fly ash, blast furnace slag, and limestone powder on the physical and mechanical properties of geopolymer mortar, Appl. Sci., 2024, 14(2): 553. 10.3390/app14020553AslanS.Erkanİ.H.The effects of fly ash, blast furnace slag, and limestone powder on the physical and mechanical properties of geopolymer mortarAppl. Sci.202414255310.3390/app14020553Open DOI
Zhang, H.Y., Kodur, V., Qi, S.L., Cao, L., Wu, B., Development of metakaolin–fly ash based geopolymers for fire resistance applications, Constr. Build. Mater., 2014, 55: 38–45. 10.1016/j.conbuildmat.2014.01.040ZhangH.Y.KodurV.QiS.L.CaoL.WuB.Development of metakaolin–fly ash based geopolymers for fire resistance applicationsConstr. Build. Mater.201455384510.1016/j.conbuildmat.2014.01.040Open DOI
Bleszynski, R., Hooton, R.D., Thomas, M.D., Rogers, C.A., Durability of ternary blend concrete with silica fume and blast-furnace slag: laboratory and outdoor exposure site studies, ACI Mater. J.-Am. Concr. Inst., 2002, 99(5): 499–508. 10.14359/12329BleszynskiR.HootonR.D.ThomasM.D.RogersC.A.Durability of ternary blend concrete with silica fume and blast-furnace slag: laboratory and outdoor exposure site studiesACI Mater. J.-Am. Concr. Inst.200299549950810.14359/12329Open DOI
Mayhoub, O.A., Nasr, E.S.A., Ali, Y., Kohail, M., Properties of slag based geopolymer reactive powder concrete, Ain Shams Eng. J., 2021, 12(1): 99–105. 10.1016/j.asej.2020.08.013MayhoubO.A.NasrE.S.A.AliY.KohailM.Properties of slag based geopolymer reactive powder concreteAin Shams Eng. J.20211219910510.1016/j.asej.2020.08.013Open DOI
Liu, Y.L., Liu, C., Qian, L.P., Wang, A.G., Sun, D.S., Guo, D., Foaming processes and properties of geopolymer foam concrete: Effect of the activator, Constr. Build. Mater., 2023, 391: 131830. 10.1016/j.conbuildmat.2023.131830LiuY.L.LiuC.QianL.P.WangA.G.SunD.S.GuoD.Foaming processes and properties of geopolymer foam concrete: Effect of the activatorConstr. Build. Mater.202339113183010.1016/j.conbuildmat.2023.131830Open DOI
Wang, X., Cui, H., Zhou, H., Song, T., Zhang, H., Liu, H., et al., Mechanical properties and energy absorption performance of foamed geopolymer under quasi-static and dynamic compression, Constr. Build. Mater., 2023, 404: 133296. 10.1016/j.conbuildmat.2023.133296WangX.CuiH.ZhouH.SongT.ZhangH.LiuH.Mechanical properties and energy absorption performance of foamed geopolymer under quasi-static and dynamic compressionConstr. Build. Mater.202340413329610.1016/j.conbuildmat.2023.133296Open DOI
Zhang, X., Zhang, X., Li, X., Tian, D., Ma, M., Wang, T., Optimized pore structure and high permeability of metakaolin/fly-ash-based geopolymer foams from Al– and H2O2–sodium oleate foaming systems, Ceram. Int., 2022, 48(13): 18348–18360. 10.1016/j.ceramint.2022.03.094ZhangX.ZhangX.LiX.TianD.MaM.WangT.Optimized pore structure and high permeability of metakaolin/fly-ash-based geopolymer foams from Al– and H2O2–sodium oleate foaming systemsCeram. Int.20224813183481836010.1016/j.ceramint.2022.03.094Open DOI
Le, V.S., Louda, P., Tran, H.N., Nguyen, P.D., Bakalova, T., Ewa Buczkowska, K., et al., Study on temperature-dependent properties and fire resistance of metakaolin-based geopolymer foams, Polymers, 2020, 12(12): 2994. 10.3390/polym12122994LeV.S.LoudaP.TranH.N.NguyenP.D.BakalovaT.Ewa BuczkowskaK.Study on temperature-dependent properties and fire resistance of metakaolin-based geopolymer foamsPolymers20201212299410.3390/polym12122994Open DOI
Wang, Z., Liu, S., Wu, K., Li, M., Zhang, X., Huang, L., Durability against dry–wet and freeze–thaw cycles of alkali residue-based foamed concrete, Mater. Struct., 2024, 57(3): 51. 10.1617/s11527-024-02318-wWangZ.LiuS.WuK.LiM.ZhangX.HuangL.Durability against dry–wet and freeze–thaw cycles of alkali residue-based foamed concreteMater. Struct.20245735110.1617/s11527-024-02318-wOpen DOI
Dhasindrakrishna, K., Pasupathy, K., Ramakrishnan, S., Sanjayan, J., Progress, current thinking and challenges in geopolymer foam concrete technology, Cem. Concr. Compos., 2021, 116: 103886. 10.1016/j.cemconcomp.2020.103886DhasindrakrishnaK.PasupathyK.RamakrishnanS.SanjayanJ.Progress, current thinking and challenges in geopolymer foam concrete technologyCem. Concr. Compos.202111610388610.1016/j.cemconcomp.2020.103886Open DOI
Alghamdi, H., Neithalath, N., Synthesis and characterization of 3D-printable geopolymeric foams for thermally efficient building envelope materials, Cem. Concr. Compos., 2019, 104: 103377. 10.1016/j.cemconcomp.2019.103377AlghamdiH.NeithalathN.Synthesis and characterization of 3D-printable geopolymeric foams for thermally efficient building envelope materialsCem. Concr. Compos.201910410337710.1016/j.cemconcomp.2019.103377Open DOI
Gosselin, C., Duballet, R., Roux, P., Gaudillière, N., Dirrenberger, J., Morel, P., Large-scale 3D printing of ultra-high performance concrete – a new processing route for architects and builders, Mater. Des., 2016, 100: 102–109. 10.1016/j.matdes.2016.03.097GosselinC.DuballetR.RouxP.GaudillièreN.DirrenbergerJ.MorelP.Large-scale 3D printing of ultra-high performance concrete – a new processing route for architects and buildersMater. Des.201610010210910.1016/j.matdes.2016.03.097Open DOI
Bedarf, P., Szabo, A., Zanini, M., Dillenburger, B., Robotic 3D printing of geopolymer foam for lightweight and insulating building elements, 3D Print. Addit. Manuf., 2024, 11(1): 1–9. 10.1089/3dp.2023.0183BedarfP.SzaboA.ZaniniM.DillenburgerB.Robotic 3D printing of geopolymer foam for lightweight and insulating building elements3D Print. Addit. Manuf.20241111910.1089/3dp.2023.0183Open DOI
Novais, R.M., Pullar, R.C., Labrincha, J.A., Geopolymer foams: An overview of recent advancements, Prog. Mater. Sci., 2020, 109: 100621. 10.1016/j.pmatsci.2019.100621NovaisR.M.PullarR.C.LabrinchaJ.A.Geopolymer foams: An overview of recent advancementsProg. Mater. Sci.202010910062110.1016/j.pmatsci.2019.100621Open DOI
Bedarf, P., Dutto, A., Zanini, M., Dillenburger, B., Foam 3D printing for construction: A review of applications, materials, and processes, Autom. Constr., 2021, 130: 103861. 10.1016/j.autcon.2021.103861BedarfP.DuttoA.ZaniniM.DillenburgerB.Foam 3D printing for construction: A review of applications, materials, and processesAutom. Constr.202113010386110.1016/j.autcon.2021.103861Open DOI
Ismail, A.H., Kusbiantoro, A., Tajunnisa, Y., Ekaputrc, J.J., Laory, I., A review of aluminosilicate sources from inorganic waste for geopolymer production: Sustainable approach for hydrocarbon waste disposal, Clean. Mater., 2024, 13: 100259. 10.1016/j.clema.2024.100259IsmailA.H.KusbiantoroA.TajunnisaY.EkaputrcJ.J.LaoryI.A review of aluminosilicate sources from inorganic waste for geopolymer production: Sustainable approach for hydrocarbon waste disposalClean. Mater.20241310025910.1016/j.clema.2024.100259Open DOI
Davidovits, J., Inorganic polymeric new materials. J. Therm. Anal., 1991, 37: 1633–1656Davidovits,J.Inorganic polymeric new materials.J. Therm. Anal.,19913716331656Search in Google Scholar
Wang, Y.S., Alrefaei, Y., Dai, J.G., Silico-aluminophosphate and alkali-aluminosilicate geopolymers: a comparative review, Front. Mater., 2019, 6: 106. 10.3389/fmats.2019.00106WangY.S.AlrefaeiY.DaiJ.G.Silico-aluminophosphate and alkali-aluminosilicate geopolymers: a comparative reviewFront. Mater.2019610610.3389/fmats.2019.00106Open DOI
Zhuang, X.Y., Chen, L., Komarneni, S., Zhou, C.H., Tong, D.S., Yang, H.M., et al., Fly ash-based geopolymer: clean production, properties and applications, J. Clean. Prod., 2016, 125: 253–267. 10.1016/j.jclepro.2016.03.019ZhuangX.Y.ChenL.KomarneniS.ZhouC.H.TongD.S.YangH.M.Fly ash-based geopolymer: clean production, properties and applicationsJ. Clean. Prod.201612525326710.1016/j.jclepro.2016.03.019Open DOI
Papa, E., Medri, V., Kpogbemabou, D., Morinière, V., Laumonier, J., Vaccari, A., et al., Porosity and insulating properties of silica-fume based foams, Energy Build., 2016, 131: 223–232. 10.1016/j.enbuild.2016.09.031PapaE.MedriV.KpogbemabouD.MorinièreV.LaumonierJ.VaccariA.Porosity and insulating properties of silica-fume based foamsEnergy Build.201613122323210.1016/j.enbuild.2016.09.031Open DOI
Vanathi, V., Nagarajan, V., Jagadesh, P., Influence of sugarcane bagasse ash on mechanical properties of geopolymer concrete, J. Build. Eng., 2023, 79: 107836. 10.1016/j.jobe.2023.107836VanathiV.NagarajanV.JagadeshP.Influence of sugarcane bagasse ash on mechanical properties of geopolymer concreteJ. Build. Eng.20237910783610.1016/j.jobe.2023.107836Open DOI
Kaur, K., Singh, J., Kaur, M., Compressive strength of rice husk ash based geopolymer: The effect of alkaline activator, Constr. Build. Mater., 2018, 169: 188–192. 10.1016/j.conbuildmat.2018.02.200KaurK.SinghJ.KaurM.Compressive strength of rice husk ash based geopolymer: The effect of alkaline activatorConstr. Build. Mater.201816918819210.1016/j.conbuildmat.2018.02.200Open DOI
Hamada, H.M., Alattar, A.A., Yahaya, F.M., Muthusamy, K., Tayeh, B.A., Mechanical properties of semi-lightweight concrete containing nano-palm oil clinker powder, Phys. Chem. Earth, Parts A/B/C, 2021, 121: 102977. 10.1016/j.pce.2021.102977HamadaH.M.AlattarA.A.YahayaF.M.MuthusamyK.TayehB.A.Mechanical properties of semi-lightweight concrete containing nano-palm oil clinker powderPhys. Chem. Earth, Parts A/B/C202112110297710.1016/j.pce.2021.102977Open DOI
Nduka, D.O., Olawuyi, B.J., Ajao, A.M., Okoye, V.C., Okigbo, O.M., Mechanical and durability property dimensions of sustainable bamboo leaf ash in high-performance concrete, Clean. Eng. Technol., 2022, 11: 100583. 10.1016/j.clet.2022.100583NdukaD.O.OlawuyiB.J.AjaoA.M.OkoyeV.C.OkigboO.M.Mechanical and durability property dimensions of sustainable bamboo leaf ash in high-performance concreteClean. Eng. Technol.20221110058310.1016/j.clet.2022.100583Open DOI
Rao, F., Liu, Q., Geopolymerization and its potential application in mine tailings consolidation: a review, Miner. Process. Extr. Metall. Rev., 2015, 36(6): 399–409. 10.1080/08827508.2015.1055625RaoF.LiuQ.Geopolymerization and its potential application in mine tailings consolidation: a reviewMiner. Process. Extr. Metall. Rev.201536639940910.1080/08827508.2015.1055625Open DOI
Ahmari, S., Zhang, L., Durability and leaching behavior of mine tailings-based geopolymer bricks, Constr. Build. Mater., 2013, 44: 743–750. 10.1016/j.conbuildmat.2013.03.075AhmariS.ZhangL.Durability and leaching behavior of mine tailings-based geopolymer bricksConstr. Build. Mater.20134474375010.1016/j.conbuildmat.2013.03.075Open DOI
Burduhos Nergis, D.D., Vizureanu, P., Sandu, A.V., Burduhos Nergis, D.P., Bejinariu, C., XRD and TG-DTA study of new phosphate-based geopolymers with coal ash or metakaolin as aluminosilicate source and mine tailings addition, Materials, 2021, 15(1): 202. 10.3390/ma15010202Burduhos NergisD.D.VizureanuP.SanduA.V.Burduhos NergisD.P.BejinariuC.XRD and TG-DTA study of new phosphate-based geopolymers with coal ash or metakaolin as aluminosilicate source and mine tailings additionMaterials202115120210.3390/ma15010202Open DOI
Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S., Geopolymer technology: the current state of the art, J. Mater. Sci., 2007, 42(9): 2917–2933, 10.1007/s10853-006-0637-zDuxsonP.Fernández-JiménezA.ProvisJ.L.LukeyG.C.PalomoA.van DeventerJ.S.Geopolymer technology: the current state of the artJ. Mater. Sci.20074292917293310.1007/s10853-006-0637-zOpen DOI
ASTM International. (2022). ASTM C618-22: Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, Pennsylvania. 10.1520/C0618-22ASTM International. (2022). ASTM C618-22Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, Pennsylvania10.1520/C0618-22Open DOI
McLellan, B.C., Williams, R.P., Lay, J., Van Riessen, A., Corder, G.D., Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement, J. Clean. Prod., 2011, 19(9–10): 1080–1090. 10.1016/j.jclepro.2011.02.010McLellanB.C.WilliamsR.P.LayJ.Van RiessenA.CorderG.D.Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cementJ. Clean. Prod.2011199–101080109010.1016/j.jclepro.2011.02.010Open DOI
Su, L., Fu, G., Liang, B., Sun, Q., Zhang, X., Mechanical properties and microstructure evaluation of fly ash - Slag geopolymer foaming materials, Ceram. Int., 2022, 48(13): 18224–18237. 10.1016/j.ceramint.2022.03.081SuL.FuG.LiangB.SunQ.ZhangX.Mechanical properties and microstructure evaluation of fly ash - Slag geopolymer foaming materialsCeram. Int.20224813182241823710.1016/j.ceramint.2022.03.081Open DOI
Etli, S., Evaluation of the effect of silica fume on the fresh, mechanical and durability properties of self-compacting concrete produced by using waste rubber as fine aggregate, J. Clean. Prod., 2023, 384: 135590. 10.1016/j.jclepro.2022.135590EtliS.Evaluation of the effect of silica fume on the fresh, mechanical and durability properties of self-compacting concrete produced by using waste rubber as fine aggregateJ. Clean. Prod.202338413559010.1016/j.jclepro.2022.135590Open DOI
Amran, M., Debbarma, S., Ozbakkaloglu, T., Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties, Constr. Build. Mater., 2021, 270: 121857. 10.1016/j.conbuildmat.2020.121857AmranM.DebbarmaS.OzbakkalogluT.Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability propertiesConstr. Build. Mater.202127012185710.1016/j.conbuildmat.2020.121857Open DOI
Abdollahnejad, Z., Pacheco-Torgal, F., Félix, T., Tahri, W., Aguiar, J.B., Mix design, properties and cost analysis of fly ash-based geopolymer foam, Constr. Build. Mater., 2015, 80: 18–30. 10.1016/j.conbuildmat.2015.01.063AbdollahnejadZ.Pacheco-TorgalF.FélixT.TahriW.AguiarJ.B.Mix design, properties and cost analysis of fly ash-based geopolymer foamConstr. Build. Mater.201580183010.1016/j.conbuildmat.2015.01.063Open DOI
Wang, G.C., The utilization of slag in civil infrastructure construction, Elsevier, Woodhead publishing, Duxford, UK, 2016. 10.1016/C2014-0-03995-0WangG.C.The utilization of slag in civil infrastructure constructionElsevierWoodhead publishing, Duxford, UK201610.1016/C2014-0-03995-0Open DOI
ASTM International. (2018). ASTM C989/C989M-18a: Specification for slag cement for use in concrete and mortars, 2013. Pennsylvania. 10.1520/C0989_C0989M-18AASTM International. (2018). ASTM C989/C989M-18aSpecification for slag cement for use in concrete and mortars2013Pennsylvania10.1520/C0989_C0989M-18AOpen DOI
Khater, H.M., Effect of silica fume on the characterization of the geopolymer materials, Int. J. Adv. Struct. Eng., 2013, 5(1): 12. 10.1186/2008-6695-5-12KhaterH.M.Effect of silica fume on the characterization of the geopolymer materialsInt. J. Adv. Struct. Eng.2013511210.1186/2008-6695-5-12Open DOI
Jena, S., Panigrahi, R., Sahu, P. (2019). Effect of Silica Fume on the Properties of Fly Ash Geopolymer Concrete. In B. B. Das & N. Neithalath (Eds.), Lecture notes in Civil Engineering 25. Sustainable Construction and Building Materials, Springer Nature Singapore, (pp. 145–153). 10.1007/978-981-13-3317-0_13Jena,S.Panigrahi,R.Sahu,P2019Effect of Silica Fume on the Properties of Fly Ash Geopolymer ConcreteIn B. B. Das & N. Neithalath (Eds.),Lecture notes in Civil Engineering 25. Sustainable Construction and Building MaterialsSpringer Nature Singaporepp. 14515310.1007/978-981-13-3317-0_13Open DOI
Shakouri, S., Bayer, Ö., Erdoğan, S.T., Development of silica fume-based geopolymer foams, Constr. Build. Mater., 2020, 260: 120442. 10.1016/j.conbuildmat.2020.120442ShakouriS.BayerÖ.ErdoğanS.T.Development of silica fume-based geopolymer foamsConstr. Build. Mater.202026012044210.1016/j.conbuildmat.2020.120442Open DOI
Malkawi, A.B., Nuruddin, M.F., Fauzi, A., Almattarneh, H., Mohammed, B.S., Effects of alkaline solution on properties of the HCFA geopolymer mortars, Procedia Eng., 2016, 148: 710–717. 10.1016/j.proeng.2016.06.581MalkawiA.B.NuruddinM.F.FauziA.AlmattarnehH.MohammedB.S.Effects of alkaline solution on properties of the HCFA geopolymer mortarsProcedia Eng.201614871071710.1016/j.proeng.2016.06.581Open DOI
Esparham, A., Moradikhou, A.B., Jamshidi Avanaki, M., Effect of various alkaline activator solutions on compressive strength of fly ash-based geopolymer concrete, Jcema, 2020, 4(2): 115–123. 10.22034/jcema.2020.224071.1018EsparhamA.MoradikhouA.B.Jamshidi AvanakiM.Effect of various alkaline activator solutions on compressive strength of fly ash-based geopolymer concreteJcema20204211512310.22034/jcema.2020.224071.1018Open DOI
Ma, C., Zhao, B., Guo, S., Long, G., Xie, Y., Properties and characterization of green one-part geopolymer activated by composite activators, J. Clean. Prod., 2019, 220: 188–199. 10.1016/j.jclepro.2019.02.159MaC.ZhaoB.GuoS.LongG.XieY.Properties and characterization of green one-part geopolymer activated by composite activatorsJ. Clean. Prod.201922018819910.1016/j.jclepro.2019.02.159Open DOI
Chen, B., Wang, J., Zhao, J., Effect of sodium aluminate dosage as a solid alkaline activator on the properties of alkali‐activated slag paste, Adv. Mater. Sci. Eng., 2021, 2021(1): 6658588. 10.1155/2021/6658588ChenB.WangJ.ZhaoJ.Effect of sodium aluminate dosage as a solid alkaline activator on the properties of alkali‐activated slag pasteAdv. Mater. Sci. Eng.202120211665858810.1155/2021/6658588Open DOI
Zhang, B., Guo, H., Yuan, P., Deng, L., Zhong, X., Li, Y., et al., Novel acid-based geopolymer synthesized from nanosized tubular halloysite: The role of precalcination temperature and phosphoric acid concentration, Cem. Concr. Compos., 2020, 110: 103601. 10.1016/j.cemconcomp.2020.103601ZhangB.GuoH.YuanP.DengL.ZhongX.LiY.Novel acid-based geopolymer synthesized from nanosized tubular halloysite: The role of precalcination temperature and phosphoric acid concentrationCem. Concr. Compos.202011010360110.1016/j.cemconcomp.2020.103601Open DOI
Pu, S., Zhu, Z., Song, W., Huo, W., Zhang, J., Mechanical and microscopic properties of fly ash phosphoric acid-based geopolymer paste: A comprehensive study, Constr. Build. Mater., 2021, 299: 123947. 10.1016/j.conbuildmat.2021.123947PuS.ZhuZ.SongW.HuoW.ZhangJ.Mechanical and microscopic properties of fly ash phosphoric acid-based geopolymer paste: A comprehensive studyConstr. Build. Mater.202129912394710.1016/j.conbuildmat.2021.123947Open DOI
Lin, H., Liu, H., Li, Y., Kong, X., Properties and reaction mechanism of phosphoric acid activated metakaolin geopolymer at varied curing temperatures, Cem. Concr. Res., 2021, 144: 106425. 10.1016/j.cemconres.2021.106425LinH.LiuH.LiY.KongX.Properties and reaction mechanism of phosphoric acid activated metakaolin geopolymer at varied curing temperaturesCem. Concr. Res.202114410642510.1016/j.cemconres.2021.106425Open DOI
Song, Y., Xue, C., Guo, W., Bai, Y., Shi, Y., Zhao, Q., Foamed geopolymer insulation materials: Research progress on insulation performance and durability, J. Clean. Prod., 2024, 444: 140991. 10.1016/j.jclepro.2024.140991SongY.XueC.GuoW.BaiY.ShiY.ZhaoQ.Foamed geopolymer insulation materials: Research progress on insulation performance and durabilityJ. Clean. Prod.202444414099110.1016/j.jclepro.2024.140991Open DOI
Kočí, V., Černý, R., Directly foamed geopolymers: A review of recent studies, Cem. Concr. Compos., 2022, 130: 104530. 10.1016/j.cemconcomp.2022.104530KočíV.ČernýR.Directly foamed geopolymers: A review of recent studiesCem. Concr. Compos.202213010453010.1016/j.cemconcomp.2022.104530Open DOI
Huang, Z., Zhang, T., Wen, Z., Proportioning and characterization of Portland cement-based ultra-lightweight foam concretes, Constr. Build. Mater., 2015, 79: 390–396. 10.1016/j.conbuildmat.2015.01.051HuangZ.ZhangT.WenZ.Proportioning and characterization of Portland cement-based ultra-lightweight foam concretesConstr. Build. Mater.20157939039610.1016/j.conbuildmat.2015.01.051Open DOI
Medri, V., Papa, E., Dedecek, J., Jirglova, H., Benito, P., Vaccari, A., et al., Effect of metallic Si addition on polymerization degree of in situ foamed alkali-aluminosilicates, Ceram. Int., 2013, 39(7): 7657–7668. 10.1016/j.ceramint.2013.02.104MedriV.PapaE.DedecekJ.JirglovaH.BenitoP.VaccariA.Effect of metallic Si addition on polymerization degree of in situ foamed alkali-aluminosilicatesCeram. Int.20133977657766810.1016/j.ceramint.2013.02.104Open DOI
Gualtieri, M.L., Cavallini, A., Romagnoli, M., Interactive powder mixture concept for the preparation of geopolymers with fine porosity, J. Eur. Ceram. Soc., 2016, 36(10): 2641–2646. 10.1016/j.jeurceramsoc.2016.03.030GualtieriM.L.CavalliniA.RomagnoliM.Interactive powder mixture concept for the preparation of geopolymers with fine porosityJ. Eur. Ceram. Soc.201636102641264610.1016/j.jeurceramsoc.2016.03.030Open DOI
Pantongsuk, T., Kittisayarm, P., Muenglue, N., Benjawan, S., Thavorniti, P., Tippayasam, C., et al., Effect of hydrogen peroxide and bagasse ash additions on thermal conductivity and thermal resistance of geopolymer foams, Mater. Today Commun., 2021, 26: 102149. 10.1016/j.mtcomm.2021.102149PantongsukT.KittisayarmP.MuenglueN.BenjawanS.ThavornitiP.TippayasamC.Effect of hydrogen peroxide and bagasse ash additions on thermal conductivity and thermal resistance of geopolymer foamsMater. Today Commun.20212610214910.1016/j.mtcomm.2021.102149Open DOI
Huang, Y., Gong, L., Shi, L., Cao, W., Pan, Y., Cheng, X., Experimental investigation on the influencing factors of preparing porous fly ash-based geopolymer for insulation material, Energy Build., 2018, 168: 9–18. 10.1016/j.enbuild.2018.02.043HuangY.GongL.ShiL.CaoW.PanY.ChengX.Experimental investigation on the influencing factors of preparing porous fly ash-based geopolymer for insulation materialEnergy Build.201816891810.1016/j.enbuild.2018.02.043Open DOI
Yan, S., Zhang, F., Liu, J., Ren, B., He, P., Jia, D., et al., Green synthesis of high porosity waste gangue microsphere/geopolymer composite foams via hydrogen peroxide modification, J. Clean. Prod., 2019, 227: 483–494. 10.1016/j.jclepro.2019.04.185YanS.ZhangF.LiuJ.RenB.HeP.JiaD.Green synthesis of high porosity waste gangue microsphere/geopolymer composite foams via hydrogen peroxide modificationJ. Clean. Prod.201922748349410.1016/j.jclepro.2019.04.185Open DOI
Novais, R.M., Ascensão, G., Ferreira, N., Seabra, M.P., Labrincha, J.A., Influence of water and aluminium powder content on the properties of waste-containing geopolymer foams, Ceram. Int., 2018, 44(6): 6242–6249. 10.1016/j.ceramint.2018.01.009NovaisR.M.AscensãoG.FerreiraN.SeabraM.P.LabrinchaJ.A.Influence of water and aluminium powder content on the properties of waste-containing geopolymer foamsCeram. Int.20184466242624910.1016/j.ceramint.2018.01.009Open DOI
Hajimohammadi, A., Ngo, T., Mendis, P., How does aluminium foaming agent impact the geopolymer formation mechanism?, Cem. Concr. Compos., 2017, 80: 277–286. 10.1016/j.cemconcomp.2017.03.022HajimohammadiA.NgoT.MendisP.How does aluminium foaming agent impact the geopolymer formation mechanism?Cem. Concr. Compos.20178027728610.1016/j.cemconcomp.2017.03.022Open DOI
Anggarini, U., Pratapa, S., Purnomo, V., Sukmana, N.C., A comparative study of the utilization of synthetic foaming agent and aluminum powder as pore-forming agents in lightweight geopolymer synthesis, Open. Chem., 2019, 17(1): 629–638. 10.1515/chem-2019-0073AnggariniU.PratapaS.PurnomoV.SukmanaN.C.A comparative study of the utilization of synthetic foaming agent and aluminum powder as pore-forming agents in lightweight geopolymer synthesisOpen. Chem.201917162963810.1515/chem-2019-0073Open DOI
Łach, M., Pławecka, K., Bąk, A., Lichocka, K., Korniejenko, K., Cheng, A., et al., Determination of the influence of hydraulic additives on the foaming process and stability of the produced geopolymer foams, Materials, 2021, 14(17): 5090. 10.3390/ma14175090ŁachM.PławeckaK.BąkA.LichockaK.KorniejenkoK.ChengA.Determination of the influence of hydraulic additives on the foaming process and stability of the produced geopolymer foamsMaterials20211417509010.3390/ma14175090Open DOI
Bai, C., Colombo, P., High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactant, Ceram. Int., 2017, 43(2): 2267–2273. 10.1016/j.ceramint.2016.10.205BaiC.ColomboP.High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactantCeram. Int.20174322267227310.1016/j.ceramint.2016.10.205Open DOI
Bai, C., Ni, T., Wang, Q., Li, H., Colombo, P., Porosity, mechanical and insulating properties of geopolymer foams using vegetable oil as the stabilizing agent, J. Eur. Ceram. Soc., 2018, 38(2): 799–805. 10.1016/j.jeurceramsoc.2017.09.021BaiC.NiT.WangQ.LiH.ColomboP.Porosity, mechanical and insulating properties of geopolymer foams using vegetable oil as the stabilizing agentJ. Eur. Ceram. Soc.201838279980510.1016/j.jeurceramsoc.2017.09.021Open DOI
Korat, L., Ducman, V., The influence of the stabilizing agent SDS on porosity development in alkali-activated fly-ash based foams, Cem. Concr. Compos., 2017, 80: 168–174. 10.1016/j.cemconcomp.2017.03.010KoratL.DucmanV.The influence of the stabilizing agent SDS on porosity development in alkali-activated fly-ash based foamsCem. Concr. Compos.20178016817410.1016/j.cemconcomp.2017.03.010Open DOI
Liu, Z., Shao, N.N., Qin, J.F., Kong, F.L., Wang, C.X, Wang, D.M., Strength and thermal behavior of low weight foam geopolymer using circulating fluidized bed combustion fly ash, J. Cent. South. Univ., 2015, 22(9): 3633–3640. 10.1007/s11771-015-2904-0LiuZ.ShaoN.N.QinJ.F.KongF.L.WangC.X,WangD.M.Strength and thermal behavior of low weight foam geopolymer using circulating fluidized bed combustion fly ashJ. Cent. South. Univ.20152293633364010.1007/s11771-015-2904-0Open DOI
Masi, G., Rickard, W.D., Vickers, L., Bignozzi, M.C., Van Riessen, A., A comparison between different foaming methods for the synthesis of light weight geopolymers, Ceram. Int., 2014, 40(9): 13891–13902. 10.1016/j.ceramint.2014.05.108MasiG.RickardW.D.VickersL.BignozziM.C.Van RiessenA.A comparison between different foaming methods for the synthesis of light weight geopolymersCeram. Int.2014409138911390210.1016/j.ceramint.2014.05.108Open DOI
Guo, S., Wang, W., Jia, Z., Qi, X., Zhu, H., Liu, X., Nanoparticle-stabilized foam with controllable structure for enhanced foamed concrete, Constr. Build. Mater., 2023, 362: 129723. 10.1016/j.conbuildmat.2022.129723GuoS.WangW.JiaZ.QiX.ZhuH.LiuX.Nanoparticle-stabilized foam with controllable structure for enhanced foamed concreteConstr. Build. Mater.202336212972310.1016/j.conbuildmat.2022.129723Open DOI
Tiyasangthong, S., Yoosuk, P., Krosoongnern, K., Krittacom, B., Nachaisit, P., Suksiripattanapong, C., Unit weight, strengths and thermal conductivity of cellular lightweight fly ash geopolymer mortar reinforced with polyvinyl alcohol, Civ. Eng. Archit., 2022, 10(7): 2943–2952. 10.13189/cea.2022.100713TiyasangthongS.YoosukP.KrosoongnernK.KrittacomB.NachaisitP.SuksiripattanapongC.Unit weight, strengths and thermal conductivity of cellular lightweight fly ash geopolymer mortar reinforced with polyvinyl alcoholCiv. Eng. Archit.20221072943295210.13189/cea.2022.100713Open DOI
Nodehi, M., A comparative review on foam-based versus lightweight aggregate-based alkali-activated materials and geopolymer, Innov. Infrastruct. Solut., 2021, 6(4): 231. 10.1007/s41062-021-00595-wNodehiM.A comparative review on foam-based versus lightweight aggregate-based alkali-activated materials and geopolymerInnov. Infrastruct. Solut.20216423110.1007/s41062-021-00595-wOpen DOI
Liu, M.Y.J., Alengaram, U.J., Jumaat, M.Z., Mo, K.H., Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete, Energy Build., 2014, 72: 238–245. 10.1016/j.enbuild.2013.12.029LiuM.Y.J.AlengaramU.J.JumaatM.Z.MoK.H.Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concreteEnergy Build.20147223824510.1016/j.enbuild.2013.12.029Open DOI
Pasupathy, K., Ramakrishnan, S., Sanjayan, J., Enhancing the mechanical and thermal properties of aerated geopolymer concrete using porous lightweight aggregates, Constr. Build. Mater., 2020, 264: 120713. 10.1016/j.conbuildmat.2020.120713PasupathyK.RamakrishnanS.SanjayanJ.Enhancing the mechanical and thermal properties of aerated geopolymer concrete using porous lightweight aggregatesConstr. Build. Mater.202026412071310.1016/j.conbuildmat.2020.120713Open DOI
Wang, J., Li, X., Hu, Y., Li, Y., Hu, P., Zhao, Y., Physical and high temperature properties of basalt fiber-reinforced geopolymer foam with hollow microspheres, Constr. Build. Mater., 2024, 411: 134698. 10.1016/j.conbuildmat.2023.134698WangJ.LiX.HuY.LiY.HuP.ZhaoY.Physical and high temperature properties of basalt fiber-reinforced geopolymer foam with hollow microspheresConstr. Build. Mater.202441113469810.1016/j.conbuildmat.2023.134698Open DOI
Zhang, N., Wang, B., Yue, D., Pan, D., Wang, H., Li, J., et al., Waste liquid-added regeneration activator to enhance the pore structure and compressive strength of geopolymer-foam-fiber: A sustainable strategy of kenaf fiber pretreatment and reuse, Process. Saf. Environ. Prot., 2023, 170: 536–544. 10.1016/j.psep.2022.12.011ZhangN.WangB.YueD.PanD.WangH.LiJ.Waste liquid-added regeneration activator to enhance the pore structure and compressive strength of geopolymer-foam-fiber: A sustainable strategy of kenaf fiber pretreatment and reuseProcess. Saf. Environ. Prot.202317053654410.1016/j.psep.2022.12.011Open DOI
Wang, Y., Zheng, T., Zheng, X., Liu, Y., Darkwa, J., Zhou, G., Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibers, Constr. Build. Mater., 2020, 251: 118960. 10.1016/j.conbuildmat.2020.118960WangY.ZhengT.ZhengX.LiuY.DarkwaJ.ZhouG.Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibersConstr. Build. Mater.202025111896010.1016/j.conbuildmat.2020.118960Open DOI
Mackenzie, K.J.D., Welter, M., Geopolymer (aluminosilicate) composites: synthesis, properties and applications, In Advances in Ceramic Matrix Composites, Elsevier, Woodhead publishing, Cambridge, UK, 2014, pp. 445–470. 10.1533/9780857098825.3.445MackenzieK.J.D.WelterM.Geopolymer (aluminosilicate) composites: synthesis, properties and applicationsInAdvances in Ceramic Matrix CompositesElsevierWoodhead publishing, Cambridge, UK2014pp. 44547010.1533/9780857098825.3.445Open DOI
Xu, H., Van Deventer, J.S.J., The geopolymerisation of alumino-silicate minerals, Int. J. Miner. Process., 2000, 59(3): 247–266. 10.1016/S0301-7516(99)00074-5XuH.Van DeventerJ.S.J.The geopolymerisation of alumino-silicate mineralsInt. J. Miner. Process.200059324726610.1016/S0301-7516(99)00074-5Open DOI
Li, T., Huang, F., Zhu, J., Tang, J., Liu, J., Effect of foaming gas and cement type on the thermal conductivity of foamed concrete, Constr. Build. Mater., 2020, 231: 117197. 10.1016/j.conbuildmat.2019.117197LiT.HuangF.ZhuJ.TangJ.LiuJ.Effect of foaming gas and cement type on the thermal conductivity of foamed concreteConstr. Build. Mater.202023111719710.1016/j.conbuildmat.2019.117197Open DOI
Bai, C., Colombo, P., Processing, properties and applications of highly porous geopolymers: A review, Ceram. Int., 2018, 44(14): 16103–16118. 10.1016/j.ceramint.2018.05.219BaiC.ColomboP.Processing, properties and applications of highly porous geopolymers: A reviewCeram. Int.20184414161031611810.1016/j.ceramint.2018.05.219Open DOI
Sharma, S., Medpelli, D., Chen, S., Seo, D.K., Calcium-modified hierarchically porous aluminosilicate geopolymer as a highly efficient regenerable catalyst for biodiesel production, RSC Adv., 2015, 5(80): 65454–65461. 10.1039/C5RA01823DSharmaS.MedpelliD.ChenS.SeoD.K.Calcium-modified hierarchically porous aluminosilicate geopolymer as a highly efficient regenerable catalyst for biodiesel productionRSC Adv.2015580654546546110.1039/C5RA01823DOpen DOI
Zhang, Z., Provis, J.L., Reid, A., Wang, H., Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete, Cem. Concr. Compos., 2015, 62: 97–105. 10.1016/j.cemconcomp.2015.03.013ZhangZ.ProvisJ.L.ReidA.WangH.Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concreteCem. Concr. Compos.2015629710510.1016/j.cemconcomp.2015.03.013Open DOI
Franchin, G., Scanferla, P., Zeffiro, L., Elsayed, H., Baliello, A., Giacomello, G., et al., Direct ink writing of geopolymeric inks, J. Eur. Ceram. Soc., 2017, 37(6): 2481–2489. 10.1016/j.jeurceramsoc.2017.01.030FranchinG.ScanferlaP.ZeffiroL.ElsayedH.BalielloA.GiacomelloG.Direct ink writing of geopolymeric inksJ. Eur. Ceram. Soc.20173762481248910.1016/j.jeurceramsoc.2017.01.030Open DOI
Barve, P., Bahrami, A., Shah, S., Geopolymer 3D printing: a comprehensive review on rheological and structural performance assessment, printing process parameters, and microstructure, Front. Mater., 2023, 10: 1241869. 10.3389/fmats.2023.1241869BarveP.BahramiA.ShahS.Geopolymer 3D printing: a comprehensive review on rheological and structural performance assessment, printing process parameters, and microstructureFront. Mater.202310124186910.3389/fmats.2023.1241869Open DOI
Muthukrishnan, S., Ramakrishnan, S., Sanjayan, J., Effect of microwave heating on interlayer bonding and buildability of geopolymer 3D concrete printing, Constr. Build. Mater., 2020, 265: 120786. 10.1016/j.conbuildmat.2020.120786MuthukrishnanS.RamakrishnanS.SanjayanJ.Effect of microwave heating on interlayer bonding and buildability of geopolymer 3D concrete printingConstr. Build. Mater.202026512078610.1016/j.conbuildmat.2020.120786Open DOI
Wu, Y., Wang, J.Y., Monteiro, P.J., Zhang, M.H., Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings, Constr. Build. Mater., 2015, 87: 100–112. 10.1016/j.conbuildmat.2015.04.004WuY.WangJ.Y.MonteiroP.J.ZhangM.H.Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildingsConstr. Build. Mater.20158710011210.1016/j.conbuildmat.2015.04.004Open DOI
Góra, M., Bańkosz, M., Tyliszczak, B., Use of innovative methods to produce highly insulating walls using 3D-printing technology, Materials, 2024, 17(16): 3990. 10.3390/ma17163990GóraM.BańkoszM.TyliszczakB.Use of innovative methods to produce highly insulating walls using 3D-printing technologyMaterials20241716399010.3390/ma17163990Open DOI
Ziejewska, C., Marczyk, J., Korniejenko, K., Bednarz, S., Sroczyk, P., et al., 3D printing of concrete-geopolymer hybrids, Materials, 2022, 15(8): 2819. 10.3390/ma15082819ZiejewskaC.MarczykJ.KorniejenkoK.BednarzS.SroczykP.3D printing of concrete-geopolymer hybridsMaterials2022158281910.3390/ma15082819Open DOI
Zoude, C., Gremillard, L., Prud’Homme, E., Combination of chemical foaming and direct ink writing for lightweight geopolymers, Open. Ceram., 2023, 16: 100478. 10.1016/j.oceram.2023.100478ZoudeC.GremillardL.Prud’HommeE.Combination of chemical foaming and direct ink writing for lightweight geopolymersOpen. Ceram.20231610047810.1016/j.oceram.2023.100478Open DOI
Ma, S., Jiang, Y., Fu, S., He, P., Sun, C., Duan, X., et al., 3D-printed Lunar regolith simulant-based geopolymer composites with bio-inspired sandwich architectures, J. Adv. Ceram., 2023, 12(3): 510–525. 10.26599/JAC.2023.9220700MaS.JiangY.FuS.HeP.SunC.DuanX.3D-printed Lunar regolith simulant-based geopolymer composites with bio-inspired sandwich architecturesJ. Adv. Ceram.202312351052510.26599/JAC.2023.9220700Open DOI
Ulubeyli, S., Lunar shelter construction issues: The state-of-the-art towards 3D printing technologies, Acta Astronaut., 2022, 195: 318–343. 10.1016/j.actaastro.2022.03.033UlubeyliS.Lunar shelter construction issues: The state-of-the-art towards 3D printing technologiesActa Astronaut.202219531834310.1016/j.actaastro.2022.03.033Open DOI
Xu, F., Gu, G., Zhang, W., Wang, H., Huang, X., Zhu, J., Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method, Ceram. Int., 2018, 44(16): 19989–19997. 10.1016/j.ceramint.2018.07.267XuF.GuG.ZhangW.WangH.HuangX.ZhuJ.Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming methodCeram. Int.20184416199891999710.1016/j.ceramint.2018.07.267Open DOI
Petlitckaia, S., Poulesquen, A., Design of lightweight metakaolin based geopolymer foamed with hydrogen peroxide, Ceram. Int., 2019, 45(1): 1322–1330. 10.1016/j.ceramint.2018.10.021PetlitckaiaS.PoulesquenA.Design of lightweight metakaolin based geopolymer foamed with hydrogen peroxideCeram. Int.20194511322133010.1016/j.ceramint.2018.10.021Open DOI
Sanjayan, J.G., Nazari, A., Chen, L., Nguyen, G.H., Physical and mechanical properties of lightweight aerated geopolymer, Constr. Build. Mater., 2015, 79: 236–244. 10.1016/j.conbuildmat.2015.01.043SanjayanJ.G.NazariA.ChenL.NguyenG.H.Physical and mechanical properties of lightweight aerated geopolymerConstr. Build. Mater.20157923624410.1016/j.conbuildmat.2015.01.043Open DOI
Jaya, N.A., Yun-Ming, L., Cheng-Yong, H., Abdullah, M.M.A.B., Hussin, K., Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer, Constr. Build. Mater., 2020, 247: 118641. 10.1016/j.conbuildmat.2020.118641JayaN.A.Yun-MingL.Cheng-YongH.AbdullahM.M.A.B.HussinK.Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymerConstr. Build. Mater.202024711864110.1016/j.conbuildmat.2020.118641Open DOI
Luna-Galiano, Y., Leiva, C., Arenas, C., Fernández-Pereira, C., Fly ash based geopolymeric foams using silica fume as pore generation agent. Physical, mechanical and acoustic properties, J. Non-Cryst. Solids, 2018, 500: 196–204. 10.1016/j.jnoncrysol.2018.07.069Luna-GalianoY.LeivaC.ArenasC.Fernández-PereiraC.Fly ash based geopolymeric foams using silica fume as pore generation agent. Physical, mechanical and acoustic propertiesJ. Non-Cryst. Solids201850019620410.1016/j.jnoncrysol.2018.07.069Open DOI
Hajimohammadi, A., Ngo, T., Mendis, P., Sanjayan, J., Regulating the chemical foaming reaction to control the porosity of geopolymer foams, Mater. Des., 2017, 120: 255–265. 10.1016/j.matdes.2017.02.026HajimohammadiA.NgoT.MendisP.SanjayanJ.Regulating the chemical foaming reaction to control the porosity of geopolymer foamsMater. Des.201712025526510.1016/j.matdes.2017.02.026Open DOI
Senff, L., Novais, R.M., Carvalheiras, J., Labrincha, J.A., Eco-friendly approach to enhance the mechanical performance of geopolymer foams: Using glass fibre waste coming from wind blade production, Constr. Build. Mater., 2020, 239: 117805. 10.1016/j.conbuildmat.2019.117805SenffL.NovaisR.M.CarvalheirasJ.LabrinchaJ.A.Eco-friendly approach to enhance the mechanical performance of geopolymer foams: Using glass fibre waste coming from wind blade productionConstr. Build. Mater.202023911780510.1016/j.conbuildmat.2019.117805Open DOI
Ducman, V., Korat, L., Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents, Mater. Charact., 2016, 113: 207–213. 10.1016/j.matchar.2016.01.019DucmanV.KoratL.Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agentsMater. Charact.201611320721310.1016/j.matchar.2016.01.019Open DOI
Shen, S., Tian, J., Zhu, Y., Zhang, X., Hu, P., Synthesis of industrial solid wastes based geopolymer foams for building energy conservation: Effects of metallic aluminium and reclaimed materials, Constr. Build. Mater., 2022, 328: 127083. 10.1016/j.conbuildmat.2022.127083ShenS.TianJ.ZhuY.ZhangX.HuP.Synthesis of industrial solid wastes based geopolymer foams for building energy conservation: Effects of metallic aluminium and reclaimed materialsConstr. Build. Mater.202232812708310.1016/j.conbuildmat.2022.127083Open DOI
Peng, X., Li, H., Shuai, Q., Wang, L., Fire resistance of alkali activated geopolymer foams produced from metakaolin and Na2O2. Materials, 2020, 13(3): 535. 10.3390/ma13030535PengX.LiH.ShuaiQ.WangL.Fire resistance of alkali activated geopolymer foams produced from metakaolin and Na2O2Materials202013353510.3390/ma13030535Open DOI
Feng, J., Zhang, R., Gong, L., Li, Y., Cao, W., Cheng, X., Development of porous fly ash-based geopolymer with low thermal conductivity, Mater. Des. (1980-2015), 2015, 65: 529–533. 10.1016/j.matdes.2014.09.024FengJ.ZhangR.GongL.LiY.CaoW.ChengX.Development of porous fly ash-based geopolymer with low thermal conductivityMater. Des. (1980-2015)20156552953310.1016/j.matdes.2014.09.024Open DOI
Pasupathy, K., Ramakrishnan, S., Sanjayan, J., Influence of recycled concrete aggregate on the foam stability of aerated geopolymer concrete, Constr. Build. Mater., 2021, 271: 121850. 10.1016/j.conbuildmat.2020.121850PasupathyK.RamakrishnanS.SanjayanJ.Influence of recycled concrete aggregate on the foam stability of aerated geopolymer concreteConstr. Build. Mater.202127112185010.1016/j.conbuildmat.2020.121850Open DOI
Sornlar, W., Wannagon, A., Supothina, S., Stabilized homogeneous porous structure and pore type effects on the properties of lightweight kaolinite-based geopolymers, J. Build. Eng., 2021, 44: 103273. 10.1016/j.jobe.2021.103273SornlarW.WannagonA.SupothinaS.Stabilized homogeneous porous structure and pore type effects on the properties of lightweight kaolinite-based geopolymersJ. Build. Eng.20214410327310.1016/j.jobe.2021.103273Open DOI
Cui, Y., Wang, D., Zhao, J., Li, D., Ng, S., Rui, Y., Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material, J. Build. Eng., 2018, 20: 21–29. 10.1016/j.jobe.2018.06.002CuiY.WangD.ZhaoJ.LiD.NgS.RuiY.Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam materialJ. Build. Eng.201820212910.1016/j.jobe.2018.06.002Open DOI
Cui, Y., Wang, D., Effects of water on pore structure and thermal conductivity of fly ash-based foam geopolymers, Adv. Mater. Sci. Eng., 2019, 2019: 1–10. 10.1155/2019/3202794CuiY.WangD.Effects of water on pore structure and thermal conductivity of fly ash-based foam geopolymersAdv. Mater. Sci. Eng.2019201911010.1155/2019/3202794Open DOI
Shao, N.N., Zhang, Y.B., Liu, Z., Wang, D.M., Zhang, Z.T., Fabrication of hollow microspheres filled fly ash based foam geopolymers with ultra-low thermal conductivity and relative high strength, Constr. Build. Mater., 2018, 185: 567–573. 10.1016/j.conbuildmat.2018.07.077ShaoN.N.ZhangY.B.LiuZ.WangD.M.ZhangZ.T.Fabrication of hollow microspheres filled fly ash based foam geopolymers with ultra-low thermal conductivity and relative high strengthConstr. Build. Mater.201818556757310.1016/j.conbuildmat.2018.07.077Open DOI
Wongkvanklom, A., Posi, P., Kasemsiri, P., Sata, V., Cao, T., Chindaprasirt, P., Strength, thermal conductivity and sound absorption of cellular lightweight high calcium fly ash geopolymer concrete, Eng. Appl. Sci. Res., 2021, 48: 487496. 10.14456/EASR.2021.51WongkvanklomA.PosiP.KasemsiriP.SataV.CaoT.ChindaprasirtP.Strength, thermal conductivity and sound absorption of cellular lightweight high calcium fly ash geopolymer concreteEng. Appl. Sci. Res.20214848749610.14456/EASR.2021.51Open DOI
Bai, C., Franchin, G., Elsayed, H., Zaggia, A., Conte, L., Li, H., et al., High-porosity geopolymer foams with tailored porosity for thermal insulation and wastewater treatment, J. Mater. Res., 2017, 32(17): 3251–3259. 10.1557/jmr.2017.127BaiC.FranchinG.ElsayedH.ZaggiaA.ConteL.LiH.High-porosity geopolymer foams with tailored porosity for thermal insulation and wastewater treatmentJ. Mater. Res.201732173251325910.1557/jmr.2017.127Open DOI
Shilar, F.A., Ganachari, S.V., Patil, V.B., Bhojaraja, B.E., Khan, T.Y., Almakayeel, N., A review of 3D printing of geopolymer composites for structural and functional applications, Constr. Build. Mater., 2023, 400: 132869. 10.1016/j.conbuildmat.2023.132869ShilarF.A.GanachariS.V.PatilV.B.BhojarajaB.E.KhanT.Y.AlmakayeelN.A review of 3D printing of geopolymer composites for structural and functional applicationsConstr. Build. Mater.202340013286910.1016/j.conbuildmat.2023.132869Open DOI
Lazorenko, G., Kasprzhitskii, A., Geopolymer additive manufacturing: A review, Addit. Manuf., 2022, 55: 102782. 10.1016/j.addma.2022.102782LazorenkoG.KasprzhitskiiA.Geopolymer additive manufacturing: A reviewAddit. Manuf.20225510278210.1016/j.addma.2022.102782Open DOI
Raza, M.H., Zhong, R.Y., Khan, M., Recent advances and productivity analysis of 3D printed geopolymers, Addit. Manuf., 2022, 52, 102685. 10.1016/j.addma.2022.102685RazaM.H.ZhongR.Y.KhanM.Recent advances and productivity analysis of 3D printed geopolymersAddit. Manuf.20225210268510.1016/j.addma.2022.102685Open DOI