This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Tjong, S.C., Chen, H., Nanocrystalline materials and coatings, Mat. Sci. Eng. R., 2004, 45: 1–88. 10.1016/j.mser.2004.07.001TjongS.C.ChenH.Nanocrystalline materials and coatingsMat. Sci. Eng. R.20044518810.1016/j.mser.2004.07.001Open DOI
Andrievski, R.A., Films as nanostructured materials with characteristic mechanical properties, Mater. Trans., 2001, 42: 1471–1473. 10.2320/matertrans.42.1471AndrievskiR.A.Films as nanostructured materials with characteristic mechanical propertiesMater. Trans.2001421471147310.2320/matertrans.42.1471Open DOI
Zhou, F.L., Gong, R.H., Porat, I., Mass production of nanofibre assemblies by electrostatic spinning, Polym. Int., 2009, 58: 331–342. 10.1002/pi.2521ZhouF.L.GongR.H.PoratI.Mass production of nanofibre assemblies by electrostatic spinningPolym. Int.20095833134210.1002/pi.2521Open DOI
Galliano, F., Landolt, D., Evaluation of corrosion protection properties of additives for waterborne epoxy coatings on steel, Prog. Org. Coat., 2002, 44: 217–225. 10.1016/S0300-9440(02)00016-4GallianoF.LandoltD.Evaluation of corrosion protection properties of additives for waterborne epoxy coatings on steelProg. Org. Coat.20024421722510.1016/S0300-9440(02)00016-4Open DOI
Rajagopalan, N., Khanna, A.S., Effect of size and morphology on UV-blocking property of nanoZnO in epoxy coating, Int. J. Sci. Res. Publ., 2013, 3: 1–14RajagopalanN.KhannaA.S.Effect of size and morphology on UV-blocking property of nanoZnO in epoxy coatingInt. J. Sci. Res. Publ.20133114Search in Google Scholar
hang, M.Q., Rong, M.Z., Yu, S.L., Wetzel, B., Friedrich, K., Improvement of tribological performance of epoxy by the addition of irradiation grafted nano-inorganic particles, Macromol. Mater. Eng., 2002, 287: 111–115. 10.1002/1439-2054(20020201)287:2<111::AID-MAME111>3.0.CO;2-IhangM.Q.RongM.Z.YuS.L.WetzelB.FriedrichK.Improvement of tribological performance of epoxy by the addition of irradiation grafted nano-inorganic particlesMacromol. Mater. Eng.200228711111510.1002/1439-2054(20020201)287:2<111::AID-MAME111>3.0.CO;2-IOpen DOI
Shi, X.M., Nguyen, T.A., Suo, Z.Y., Liu, Y.J., Avci, R., Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating, Surf. Coat. Technol., 2009, 204: 237–245. 10.1016/j.surfcoat.2009.06.048ShiX.M.NguyenT.A.SuoZ.Y.LiuY.J.AvciR.Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coatingSurf. Coat. Technol.200920423724510.1016/j.surfcoat.2009.06.048Open DOI
Chattopadhyay, D.K., Raju, K.V.S.N., Structural engineering of polyurethane coatings for high performance applications, Prog. Polym. Sci., 2007, 32: 352–418. 10.1016/j.progpolymsci.2006.05.003ChattopadhyayD.K.RajuK.V.S.N.Structural engineering of polyurethane coatings for high performance applicationsProg. Polym. Sci.20073235241810.1016/j.progpolymsci.2006.05.003Open DOI
Hare, C.H., Corrosion control of steel by organic coatings, Uhlig’s corrosion handbook, Ed. Revie, R.W., 2011, pp. 971–983. 10.1002/9780470872864.ch67ppHareC.H.Corrosion control of steel by organic coatingsUhlig’s corrosion handbookEd.RevieR.W.2011pp. 97198310.1002/9780470872864.ch67ppOpen DOI
Compere, C., Frechette, E., Ghali, E., The corrosion evaluation of painted and artificially damaged painted steel panels by Ac-impedance measurements, Corros. Sci., 1993, 34: 1259–1274. 10.1016/0010-938x(93)90086-VCompereC.FrechetteE.GhaliE.The corrosion evaluation of painted and artificially damaged painted steel panels by Ac-impedance measurementsCorros. Sci.1993341259127410.1016/0010-938x(93)90086-VOpen DOI
Fedullo, N., Sorlier, E., Sclavons, M., Bailly, C., Lefebvre, J.M., Devaux, J., Polymer-based nanocomposites: Overview, applications and perspectives, Prog. Org. Coat., 2007, 58: 87–95. 10.1016/j.porgcoat.2006.09.028FedulloN.SorlierE.SclavonsM.BaillyC.LefebvreJ.M.DevauxJ.Polymer-based nanocomposites: Overview, applications and perspectivesProg. Org. Coat.200758879510.1016/j.porgcoat.2006.09.028Open DOI
Yang, L.H., Liu, F.C., Han, E.H., Effects of P/B on the properties of anticorrosive coatings with different particle size, Prog. Org. Coat., 2005, 53: 91–98. 10.1016/j.porgcoat.2005.01.003YangL.H.LiuF.C.HanE.H.Effects of P/B on the properties of anticorrosive coatings with different particle sizeProg. Org. Coat.200553919810.1016/j.porgcoat.2005.01.003Open DOI
González, S., Cáceres, F., Fox, V., Souto, R.M., Resistance of metallic substrates protected by an organic coating containing aluminum powder, Prog. Org. Coat., 2003, 46: 317–323. 10.1016/s0300-9440(03)00021-3GonzálezS.CáceresF.FoxV.SoutoR.M.Resistance of metallic substrates protected by an organic coating containing aluminum powderProg. Org. Coat.20034631732310.1016/s0300-9440(03)00021-3Open DOI
Becker, O., Varley, R., Simon, G., Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins, Polymer, 2002, 43: 4365–4373. 10.1016/S0032-3861(02)00269-0BeckerO.VarleyR.SimonG.Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resinsPolymer2002434365437310.1016/S0032-3861(02)00269-0Open DOI
González, S., Mirza Rosca, I.C., Souto, R.M., Investigation of the corrosion resistance characteristics of pigments in alkyd coatings on steel, Prog. Org. Coat., 2001, 43: 282–285. 10.1016/s0300-9440(01)00210-7GonzálezS.Mirza RoscaI.C.SoutoR.M.Investigation of the corrosion resistance characteristics of pigments in alkyd coatings on steelProg. Org. Coat.20014328228510.1016/s0300-9440(01)00210-7Open DOI
Supplit, R., Schubert, U., Corrosion protection of aluminum pigments by sol–gel coatings, Corros. Sci., 2007, 49: 3325–3332. 10.1016/j.corsci.2007.03.014SupplitR.SchubertU.Corrosion protection of aluminum pigments by sol–gel coatingsCorros. Sci.2007493325333210.1016/j.corsci.2007.03.014Open DOI
Zhang, Y.C., Ye, H.Q., Liu, H., Han, K., Preparation and characterisation of aluminium pigments coated with silica for corrosion protection, Corros. Sci., 2011, 53: 1694–1699. 10.1016/j.corsci.2011.01.027ZhangY.C.YeH.Q.LiuH.HanK.Preparation and characterisation of aluminium pigments coated with silica for corrosion protectionCorros. Sci.2011531694169910.1016/j.corsci.2011.01.027Open DOI
Karbasi, A., Moradian, S., Tahmassebi, N., Ghodsi, P., Achievement of optimal aluminum flake orientation by the use of special cubic experimental design, Prog. Org. Coat., 2006, 57: 175–182. 10.1016/j.porgcoat.2006.06.008KarbasiA.MoradianS.TahmassebiN.GhodsiP.Achievement of optimal aluminum flake orientation by the use of special cubic experimental designProg. Org. Coat.20065717518210.1016/j.porgcoat.2006.06.008Open DOI
Jalili, M., Rostami, M., Ramezanzadeh, B., An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle, Appl. Surf. Sci., 2015, 328: 95–108. 10.1016/j.apsusc.2014.12.034JaliliM.RostamiM.RamezanzadehB.An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticleAppl. Surf. Sci.20153289510810.1016/j.apsusc.2014.12.034Open DOI
Madhankumar, A., Nagarajan, S., Rajendran, N., Nishimura, T., EIS evaluation of protective performance and surface characterization of epoxy coating with aluminum nanoparticles after wet and dry corrosion test, J. Solid. State. Electr., 2012, 16: 2085–2093. 10.1007/s10008-011-1623-1MadhankumarA.NagarajanS.RajendranN.NishimuraT.EIS evaluation of protective performance and surface characterization of epoxy coating with aluminum nanoparticles after wet and dry corrosion testJ. Solid. State. Electr.2012162085209310.1007/s10008-011-1623-1Open DOI
Liang, Y., Liu, F.C., Nie, M., Zhao, S.Y., Lin, J.D., Han, E.H., Influence of nano-Al concentrates on the corrosion resistance of epoxy coatings, J. Mater. Sci. Technol., 2013, 29: 353–358. 10.1016/j.jmst.2013.01.014LiangY.LiuF.C.NieM.ZhaoS.Y.LinJ.D.HanE.H.Influence of nano-Al concentrates on the corrosion resistance of epoxy coatingsJ. Mater. Sci. Technol.20132935335810.1016/j.jmst.2013.01.014Open DOI
Alam, M.A., Samad, U.A., Seikh, A., Mohammed, J.A., Al-Zahrani, S.M., Sherif, E.S.M., Development and characterization of PA 450 and PA 3282 epoxy coatings as anti-corrosion materials for offshore applications, Materials, 2022, 15: 2562. ARTN 256210.3390/ma15072562AlamM.A.SamadU.A.SeikhA.MohammedJ.A.Al-ZahraniS.M.SherifE.S.M.Development and characterization of PA 450 and PA 3282 epoxy coatings as anti-corrosion materials for offshore applicationsMaterials2022152562ARTN 256210.3390/ma15072562Open DOI
Abdus Samad, U., Alam, M.A., Seikh, A.H., Mohammed, J.A., Al-Zahrani, S.M., Sherif, E.-S.M., Corrosion resistance performance of epoxy coatings incorporated with unmilled micro aluminium pigments, Crystals, 2023, 13: 558. 10.3390/cryst13040558Abdus SamadU.AlamM.A.SeikhA.H.MohammedJ.A.Al-ZahraniS.M.SherifE.-S.M.Corrosion resistance performance of epoxy coatings incorporated with unmilled micro aluminium pigmentsCrystals20231355810.3390/cryst13040558Open DOI
Rijesh, M., Sreekanth, M.S., Deepak, A., Dev, K., Surendranathan, A.O., Effect of milling time on production of aluminium nanoparticle by high energy ball milling, Int. J. Mech. Eng. Technol., 2018 9(8): 646–652RijeshM.SreekanthM.S.DeepakA.DevK.SurendranathanA.O.Effect of milling time on production of aluminium nanoparticle by high energy ball millingInt. J. Mech. Eng. Technol.201898646652Search in Google Scholar
Deka, S., Mozafari, F., Mallick, A., Thamburaja, P., Gupta, M., Development of high-performance nanostructured aluminum and its constitutive modeling, Mech. Adv. Mater. Struct., 2023, 31: 1–20. 10.1080/15376494.2023.2262733DekaS.MozafariF.MallickA.ThamburajaP.GuptaM.Development of high-performance nanostructured aluminum and its constitutive modelingMech. Adv. Mater. Struct.20233112010.1080/15376494.2023.2262733Open DOI
Azani, N.F.S.M., Hussin, M.H., Comparison of cellulose nanocrystal (CNC) filler on chemical, mechanical, and corrosion properties of epoxy-Zn protective coatings for mild steel in 3.5% NaCl solution, Cellulose, 2021, 28: 6523–6543. 10.1007/s10570-021-03910-xAzaniN.F.S.M.HussinM.H.Comparison of cellulose nanocrystal (CNC) filler on chemical, mechanical, and corrosion properties of epoxy-Zn protective coatings for mild steel in 3.5% NaCl solutionCellulose2021286523654310.1007/s10570-021-03910-xOpen DOI
Kim, H.J., Jung, D.H., Jung, I.H., Cifuentes, J.I., Rhee, K.Y., Hui, D., Enhancement of mechanical properties of aluminium/epoxy composites with silane functionalization of aluminium powder, Compos. Part. B-Eng., 2012, 43: 1743–1748. 10.1016/j.compositesb.2011.12.010KimH.J.JungD.H.JungI.H.CifuentesJ.I.RheeK.Y.HuiD.Enhancement of mechanical properties of aluminium/epoxy composites with silane functionalization of aluminium powderCompos. Part. B-Eng.2012431743174810.1016/j.compositesb.2011.12.010Open DOI
Oliver, W.C., Pharr, G.M., An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, 7: 1564–1583. 10.1557/Jmr.1992.1564OliverW.C.PharrG.M.An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experimentsJ. Mater. Res.199271564158310.1557/Jmr.1992.1564Open DOI
Samad, U.A., Alam, M.A., Chafidz, A., Al-Zahrani, S.M., Alharthi, N.H., Enhancing mechanical properties of epoxy/polyaniline coating with addition of ZnO nanoparticles: Nanoindentation characterization, Prog. Org. Coat., 2018, 119: 109–115. 10.1016/j.porgcoat.2018.02.018SamadU.A.AlamM.A.ChafidzA.Al-ZahraniS.M.AlharthiN.H.Enhancing mechanical properties of epoxy/polyaniline coating with addition of ZnO nanoparticles: Nanoindentation characterizationProg. Org. Coat.201811910911510.1016/j.porgcoat.2018.02.018Open DOI
Vyazovkin, S., Modification of the integral isoconversional method to account for variation in the activation energy, J. Comput. Chem., 2001, 22: 178–183. 10.1002/1096-987x(20010130)22:2<178:Aid-Jcc5>3.0.Co;2-#VyazovkinS.Modification of the integral isoconversional method to account for variation in the activation energyJ. Comput. Chem.20012217818310.1002/1096-987x(20010130)22:2<178:Aid-Jcc5>3.0.Co;2-#Open DOI
Nicodemo, L., Nicolais, L., Mechanical-properties of metal polymer composites, J. Mater. Sci. Lett., 1983, 2: 201–203. 10.1007/Bf00725619NicodemoL.NicolaisL.Mechanical-properties of metal polymer compositesJ. Mater. Sci. Lett.1983220120310.1007/Bf00725619Open DOI
Taşdemır, M., Gülsoy, H.Ö., Mechanical properties of polymers filled with iron powder, Int. J. Polym. Mater., 2008, 57: 258–265. 10.1080/00914030701473656TaşdemırM.GülsoyH.Ö.Mechanical properties of polymers filled with iron powderInt. J. Polym. Mater.20085725826510.1080/00914030701473656Open DOI
Anis, A., Elnour, A.Y., Alam, M.A., Al-Zahrani, S.M., AlFayez, F., Bashir, Z., Aluminum-filled amorphous-PET, a composite showing simultaneous increase in modulus and impact resistance, Polymers (Basel), 2020, 12: 2038. 10.3390/polym12092038AnisA.ElnourA.Y.AlamM.A.Al-ZahraniS.M.AlFayezF.BashirZ.Aluminum-filled amorphous-PET, a composite showing simultaneous increase in modulus and impact resistancePolymers (Basel)202012203810.3390/polym12092038Open DOI
Qin, J., Shi, X.T., Li, H.Y., Zhao, R.F., Li, G.Q., Zhang, S.F., et al., Performance and failure process of green recycling solutions for preparing high degradation resistance coating on biomedical magnesium alloys, Green. Chem., 2022, 24: 8113–8130. 10.1039/d2gc02638dQinJ.ShiX.T.LiH.Y.ZhaoR.F.LiG.Q.ZhangS.F.Performance and failure process of green recycling solutions for preparing high degradation resistance coating on biomedical magnesium alloysGreen. Chem.2022248113813010.1039/d2gc02638dOpen DOI
Zhang, W., Feng, B., Huang, L., Liang, Y., Chen, J., Li, X., et al., Fe/Cu diatomic sites dispersed on nitrogen-doped mesoporous carbon for the boosted oxygen reduction reaction in Mg-air and Zn-air batteries, App. Catal. B Environ. Energy, 2024, 358: 124450. 10.1016/j.apcatb.2024.124450ZhangW.FengB.HuangL.LiangY.ChenJ.LiX.Fe/Cu diatomic sites dispersed on nitrogen-doped mesoporous carbon for the boosted oxygen reduction reaction in Mg-air and Zn-air batteriesApp. Catal. B Environ. Energy202435812445010.1016/j.apcatb.2024.124450Open DOI
Liang, Y, Ding, W, Liu, G, Traub, J, Gu, Z., Interlaced stacked hollow Cu2O dendrite for stable lithium metal anode, Solid State Ionics, 2024, 410: 116530. 10.1016/j.ssi.2024.116530LiangYDingWLiuGTraubJGuZ.Interlaced stacked hollow Cu2O dendrite for stable lithium metal anodeSolid State Ionics202441011653010.1016/j.ssi.2024.116530Open DOI
Li, J.Y., Shi, H.W., Liu, F.C., Han, E.H., Self-healing epoxy coating based on tung oil-containing microcapsules for corrosion protection, Prog. Org. Coat., 2021, 156: 106236. 10.1016/j.porgcoat.2021.106236LiJ.Y.ShiH.W.LiuF.C.HanE.H.Self-healing epoxy coating based on tung oil-containing microcapsules for corrosion protectionProg. Org. Coat.202115610623610.1016/j.porgcoat.2021.106236Open DOI
Alam, M.A., Samad, U.A., Abdo, H.S., Anis, A., Alnaser, I.A., Hassan, A, et al., Fabrication of hybrid epoxy composites (Joint compound adhesive) for aluminum substrate applications and their evaluation for mechanical properties, ACS Omega, 2024 9(38): 39452–39463. 10.1021/acsomega.4c02971AlamM.A.SamadU.A.AbdoH.S.AnisA.AlnaserI.A.HassanAFabrication of hybrid epoxy composites (Joint compound adhesive) for aluminum substrate applications and their evaluation for mechanical propertiesACS Omega2024938394523946310.1021/acsomega.4c02971Open DOI
Samad, U.A., Alam, M.A., Abdo, H.S., Anis, A., Al-Zahrani, S.M., 2023. Synergistic effect of nanoparticles: enhanced mechanical and corrosion protection properties of epoxy coatings incorporated with SiO2 and ZrO2, Polymers, 15(14): 3100. 10.3390/polym15143100SamadU.A.AlamM.A.AbdoH.S.AnisA.Al-ZahraniS.M.2023Synergistic effect of nanoparticles: enhanced mechanical and corrosion protection properties of epoxy coatings incorporated with SiO2 and ZrO2Polymers1514310010.3390/polym15143100Open DOI
Samad, U.A., Alam, M.A., Anis, A., Abdo, H.S., Shaikh, H., Al-Zahrani, S.M., 2022. Nanomechanical and electrochemical properties of ZnO-nanoparticle-filled epoxy coatings, Coatings, 12(2): 282. 10.3390/coatings12020282SamadU.A.AlamM.A.AnisA.AbdoH.S.ShaikhH.Al-ZahraniS.M.2022Nanomechanical and electrochemical properties of ZnO-nanoparticle-filled epoxy coatingsCoatings12228210.3390/coatings12020282Open DOI
Alam, M.A., Samad, U.A., Anis, A., Sherif, E.-S.M., Abdo, H.S., Al-Zahrani, S.M., 2023. The effect of zirconia nanoparticles on thermal, mechanical, and corrosion behavior of nanocomposite epoxy coatings on steel substrates, Materials, 16(13): 4813. 10.3390/ma16134813AlamM.A.SamadU.A.AnisA.SherifE.-S.M.AbdoH.S.Al-ZahraniS.M.2023The effect of zirconia nanoparticles on thermal, mechanical, and corrosion behavior of nanocomposite epoxy coatings on steel substratesMaterials1613481310.3390/ma16134813Open DOI
Fan, L., Tang, F.J., Reis, S.T., Chen, G.D., Koenigstein, M.L., Corrosion resistances of steel pipe internally coated with enamel, Corrosion, 2017, 73: 1335–1345. 10.5006/2497FanL.TangF.J.ReisS.T.ChenG.D.KoenigsteinM.L.Corrosion resistances of steel pipe internally coated with enamelCorrosion2017731335134510.5006/2497Open DOI
Fan, L., Reis, S.T., Chen, G.D., Koenigstein, M.L., Corrosion resistance of pipeline steel with damaged enamel coating and cathodic protection, Coatings, 2018, 8: 185. 10.3390/coatings8050185FanL.ReisS.T.ChenG.D.KoenigsteinM.L.Corrosion resistance of pipeline steel with damaged enamel coating and cathodic protectionCoatings2018818510.3390/coatings8050185Open DOI
Mayne J.E.O., The mechanism of the inhibition of the corrosion of iron and steel by means of paint, Official Digest, 1952, 24: 127MayneJ.E.O.The mechanism of the inhibition of the corrosion of iron and steel by means of paintOfficial Digest195224127Search in Google Scholar
Davis, G.D., Krebs, L.A., Dacres, C.M., Coating evaluation and validation of accelerated test conditions using an in-situ corrosion sensor, J. Coating. Technol., 2002, 74: 69–74. 10.1007/Bf02697959DavisG.D.KrebsL.A.DacresC.M.Coating evaluation and validation of accelerated test conditions using an in-situ corrosion sensorJ. Coating. Technol.200274697410.1007/Bf02697959Open DOI
Zhang, T.Y., Zhang, T., He, Y.T., Wang, Y.C., Bi, Y.P., Corrosion and aging of organic aviation coatings: A review, Chin. J. Aeronaut., 2023, 36: 1–35. 10.1016/j.cja.2022.12.003ZhangT.Y.ZhangT.HeY.T.WangY.C.BiY.P.Corrosion and aging of organic aviation coatings: A reviewChin. J. Aeronaut.20233613510.1016/j.cja.2022.12.003Open DOI
Changkai, W., Tianyu, Z., Teng, Z., Yuting, H., Yuchen, W., Guoming, C., Deterioration behavior of graphene-modified epoxy-primer-coated aluminum alloy in a UVA acidic alternation immersion environment, J. Alloy. Compd., 2023, 968: 171853. 10.1016/j.jallcom.2023.171853ChangkaiW.TianyuZ.TengZ.YutingH.YuchenW.GuomingC.Deterioration behavior of graphene-modified epoxy-primer-coated aluminum alloy in a UVA acidic alternation immersion environmentJ. Alloy. Compd.202396817185310.1016/j.jallcom.2023.171853Open DOI